Detector Geometry Working Group activities and preliminary results

Matteo Rama, Achille Stocchi

Document from F.Forti and B. Ratclif

The SuperB detector as described in the Conceptual Design Report has a number of options not yet defined that have a large impact on the overal detector geometry. As the MC simulation tools for the detector are rapidly maturing, we believe it is timely to set up a Detector Geometry Working Group (DGWG) to study the physics tradeoffs of the open CDR detector options with the goal of being able to finalize the global geometry and define the subsystems of the SuperB detector within a relatively short time frame, between six months and a year. The DGWG main task will be to examine critically the open questions detailed below and provide to the proto-technical board the information necessary to make the relevant decisions.

Do we need a forward PID (eventually backward) ?

Do we need a backward EMC ?

The ammount of absorber on the IFR ?

Internal geometry of SVT / Space between SVT and DCH

SuperB @ Warwick 16th / IV / 2009

Use golden channles to optimise the detector geometry

	H^+	Minimal	Non-Minimal	Non-Minimal	NP	Right-Handed
	high $ an\!eta$	$_{\rm FV}$	FV (1-3)	FV (2-3)	Z-penguins	currents
$\mathcal{B}(B \to X_s \gamma)$		Х		О		О
$A_{CP}(B \to X_s \gamma)$				Х		О
$\mathcal{B}(B \to \tau \nu)$	X- CKM					
$\mathcal{B}(B \to X_s l^+ l^-)$				О	О	О
$\mathcal{B}(B \to K \nu \overline{\nu})$				О	Х	
$S(K_S \pi^0 \gamma)$						Х
β			X- CKM			Х

+ $\tau \rightarrow \mu\gamma$

Disussion on adding a golden channel for charm physics (results at the end of this meeting)

- X The GOLDEN channel for the given scenario
- O Not the GOLDEN channel for the given scenario but can show experimentally measurable deviations from SM.

These are the golden modes for physics and also challenging ones from detector point of view !

	People (22/jan/09)	Detector	Optimization studies	Physics	Items needing
		options		benchmarks	development
SVT	D. Brown, N. Neri, D.		internal geometry, radius of	B→Ksπº/Ksπºγ,	 dE/dx
	Roberts, G. Simi		outer layer	beta, Recoil,	 endcap PID
				(tagging)	response
DCH	M. Rama, G.		longer DCH replacing forw. PID,	tracking	 PID selectors
	Finocchiaro		inner radius	performance,	 tuning of EMC
				dE/dx	response
PID	A. Stocchi, L. Burm,	forward PID	angular and momentum	B→(d,s) I ⁺ I ⁻ , Recoil,	 hadron
	N. Arnaud, A. Perez,	yes/no,	coverage range, needed PID	tagging	shower sim.
	A. Berdyugin, B.	backward PID	performance, #rad. length		 Flavour
	Meadows, F. Renga	yes/no	(impact on endcap EMC		tagging
	E. Manoni		performance)		 Tag vertex
EMC	C. Cheng, E. Manoni	backward EMC	angular coverage of forw/back	B→Ksπº/Ksπºγ,	
		yes/no	endcaps, needed performance,	B→tau nu, b→sγ,	
			degradation due to endcap PID	B→K nu nubar	
				Recoil, tagging	
IFR	G. Cibinetto, M.		amount and distribution of	beta, Recoil,	
	Rotondo		absorber	tagging	
			Other: position of IR vertex		

Monday 16 February 2009 16:00->18:30

Parallel V - detector geometry group

16:00	SVT studies (10')	Nicola Neri (Universita' di Pisa & INFN)
16:10	Study of deltaT in B->Kspi0 (10')	Gabriele Simi (UMD College Park, MD)
16:20	μ/π separation using TOF in DIRC (10)	Brian Meadows (University of Cincinnati)
16:30	Physics case of forw. PID (20')	Achille Stocchi, Leonid Burmistrov (LAL)
16:50	Breco in FastSim. Impact of PID (15')	Elisa Manoni (PG)
17:05	Endcap EMC - plans (20')	Chih-hsiang Cheng (Caltech), Elisa Manoni (PG)
17:25	IFR optimization strategy (10')	Gianluigi Cibinetto (FE), Marcello Rotondo (INFN Padova)
17:35	AFit (15')	Adrian Bevan (Queen Mary, U. London)

+ two phone meetings on March

Detector configurations for DGWG studies

Set of reference detector configurations in FastSim to test the performances of the benchmark channels

C. Cecchi

Potential problems to this solution

- LYSO not back of 10cm → bigger volume (+10% cost!), alignment edge barrel/endcap could present problem of performance
- material in front of EMC if PID

At the meeting it was decided that this Point should be studied

This table is a starting point for discussion

	SVT	DCH	PID	EMC	IFR
0	5 layers+L0	"babar"	DIRC	fwd LYSO	baseline
1	5 layers+L0	"babar"+bwd+fwd	DIRC	fwd LYSO	baseline
2	5 layers+L0	"babar"+bwd	DIRC+fwd	fwd LYSO	baseline
3	5 layers+L0	"babar"+fwd	DIRC	fwd LYSO+bwd	baseline
4	5 layers+L0	"babar"	DIRC+fwd	fwd LYSO+bwd	baseline
5	5 layers+L0	"babar"	DIRC	fwd CsI+LYSO+bwd	baseline

"babar" DCH: inner radius close to the outer SVT radius SVT: what options? Discussion today EMC: discussion today (likely involving PID and DCH as well) Some work really started in the group (we show few examples..)

- 1) A lot in learning how to use and help in improving FastSim
 - + selektors (many talks @ this meetings)
 - + new algortims (not specif to this group)
 - + preliminary work on geom.
 - optimisation
- /+ implementation of tools
 - (like Breco)

2) Preliminary results on sensitivity [relevant for the disucssions here] (see talk of F. Renga on Kvv)

FastSim vs. BaBar Full Sim.

• Tag Reconstruction & Preselection efficiency:

			Κ* ν ν
	FAST	FULL	POPO
SL	0.0193	0.0200	ВОВО
HAD	0.0045	0.0033	

• Tag + Signal Reconstruction & Preselection efficiency:

	FAST	FULL
SL	0.00175	0.00188
HAD	0.00036	0.00053

Agreement at 10% level in the SL analysis Discrepancy in the HAD analysis due to difficulties in reproducing the BaBar analysis strategy

- Baseline SL:
 - busenne JL.

Some preliminary results

- 25% improvement in S/sqrt(B) for neutral B;
- 35% improvement in S/sqrt(B) for charged B;
- Baseline HAD:
 - 10% improvement in S/sqrt(B) for neutral B;
 - 20% improvement in S/sqrt(B) for charged B;

FastSim vs. Full Sim.

Some discrepancy in the spectrum (high runs in rus sini)

Underestimated Production of low energy EMC deposits

<u>FastSim is good enough for comparing different configurations</u> (i.e. relative changes) Not yet mature for absolute estimate of performances Hopefully few of these studies will be ready for Perugia SuperB meeting evaluating the impact of the different detector configurations

It has been asked to think on the backgrounds we need to be simulated.

→ In our case is also important if we want to simulate several detector configuarations

As far as the B physics group is concerned, Breco sample could be used as our generic MC