Sensitivity to the Higgs Sector of the SUSY-Seesaw Models in the LFV $\tau \rightarrow \mu f_0$ decay

Ana María Rodríguez Sánchez

Dpt. Física Teórica/IFT, Universidad Autónoma, Madrid

April 15, 2009

- M. J. Herrero, J. Portoles, A.M. Rodriguez-Sanchez, [arXiv:0903.5151[hep-ph]]
- E. Arganda, M. J. Herrero, J. Portoles, A. Rodriguez-Sanchez and A. M. Teixeira, [arXiv:0810.0163 [hep-ph]].
- E. Arganda, M. J. Herrero, J. Portoles, A. Rodriguez-Sanchez and A. M. Teixeira, [arXiv:0812.2692 [hep-ph]]

Why Lepton Flavour Violation (LFV)?

- LFV occurs in Nature:
 - $\nu_i-\nu_j$ oscillations DO NOT conserve Lepton Flavour Number
- In SM:no LFV if $m_{
 u}=0$ and extremely suppresed if $m_{
 u}
 eq 0$
- LFV is very sensitive to SUSY: if Seesaw Mechanism for m_{ν} generation with Majorana $N_R \Rightarrow Y_{\nu}$ can be O(1). Large Y_{ν} induce, via SUSY loops, large LFV rates.
- Challenging exp. bounds : present/future sensitivities (?): MEGA, SINDRUM, BaBar, Belle / MEG, SuperB fact., PRISM/PRIME

$$\begin{split} & \text{BR}(\tau \to \mu \gamma) < 4.5 \times 10^{-8} / 10^{-9} \quad \text{BR}(\tau \to \mu f_0) < 3.4 \times 10^{-8} / 10^{-9} \\ & \text{BR}(\tau \to 3\mu) < 3.2 \times 10^{-8} / 10^{-9} \quad \text{BR}(\tau \to \mu \eta) < 5.1 \times 10^{-8} / 10^{-9} \end{split}$$

In the $\tau-\mu$ sector the semileptonic channels are already competitive with the leptonic ones.

• LFV bounds \Rightarrow Bounds on SUSY and ν parameter space

Constrained SUSY-Seesaw models

- MSSM-Seesaw introduces too many new parameters due to the SOFT SUSY breaking terms.
- SOFT- SUSY breaking universality at the gauge coupling unification scale $M_x = 2 \times 10^{16}$ GeV
- We work in CMSSM(M_0 , $M_{1/2}$, A_0 , $\tan \beta$, $\operatorname{sign}(\mu)$) and NUHM (previous and $M_{H_1}^2 = M_0^2(1 + \delta_1)$, $M_{H_2}^2 = M_0^2(1 + \delta_2)$) The main difference is that in NUHM a light Higgs sector can be obtained even for heavy SUSY.
- The low energy parameters are obtained by solving th RGE in two steps:
 - The full set of equations is run from M_x to m_M . At m_M the ν_R as well as $\tilde{\nu}_R$ decouple.
 - The RGE without the equations for the ν_R and $\tilde{\nu_R}$ are run from m_M to M_{EW} . The masses and couplings are computed.

How to generate LFV via SUSY loops?

- Need non vanishing off diagonal slepton mass entries.
- The flavor off diagonal mass entries $M_{\tilde{j}}^{ij}$ and $M_{\tilde{\nu}}^{ij}$ $(i \neq j)$ at M_{EW} are generated via RGE-running of Y_{ν} .

The LL off-diagonal entry of the slepton mass matrix in the Leading-Logarithmic (LLog) approximation:

$$M_{LL}^{ij2} = -\frac{1}{8 \pi^2} \left(3 M_0^2 + A_0^2 \right) \left(Y_{\nu}^{\dagger} L Y_{\nu} \right)_{ij}; \ L_{kl} \equiv \log \left(\frac{M_X}{m_{M_k}} \right) \delta_{kl}$$

- Flavor changing sleptons propagators into loops then generate LFV
- δ_{LL}^{ij} useful phenomenologycal parameter that encodes the LFV in the i-j sector:

$$\delta_{LL}^{ij} = \frac{M_{LL}^{ij2}}{M_{SUSY}^2}$$

- Prediction of the LFV $\tau \rightarrow \mu f_0$ branching ratio in Constrained MSSM-Seesaw Models: CMSSM-NUHM.
- Full one loop computation of LFV rates. SPHENO 2.2.2.We do not use LLog nor MI approx.
- Require compatibility with ν data.
- Compare our prediction with present LFV bound.
- Explore sensitivity to SUSY, Higgs and heavy ν_R .
- Provide an approximate formulae useful for future analysis.
- Comparison with other Higgs's sensitive channels: $\tau \rightarrow 3\mu, \tau \rightarrow \mu\eta.$

Seesaw mechanism with $3\nu_R$ versus neutrino data

SeeSaw Mechanism with 3 ν_R : $(m_{\nu_1}, m_{\nu_2}, m_{\nu_3}, m_{N_1}, m_{N_2}, m_{N_3})$ $m_{\nu} = -m_D^T m_N^{-1} m_D; m_N = m_M; m_D = Y_{\nu} < H_2 >$ **Solution:** $m_D = i \sqrt{m_N^{diag}} R \sqrt{m_\nu^{diag}} U_{\rm PMNS}^{\dagger}$ [Casas, Ibarra ('01)] *R* is a 3 × 3 complex matrix and orthogonal $\mathbf{R} = \begin{pmatrix} c_2 c_3 & -c_1 s_3 - s_1 s_2 c_3 & s_1 s_3 - c_1 s_2 c_3 \\ c_2 s_3 & c_1 c_3 - s_1 s_2 s_3 & -s_1 c_3 - c_1 s_2 s_3 \\ s_2 & s_1 c_2 & c_1 c_2 \end{pmatrix}$

 $c_i = \cos \theta_i$, $s_i = \sin \theta_i$, $\theta_{1,2,3}$ complex

Parameters: $\theta_{ii}, \delta, \alpha, \beta, m_{\nu_i}, m_{N_i}, \theta_i$ (18); m_{N_i}, θ_i drive the size of Y_{ν_i} . Hierarchical ν 's :

$$m_{\nu_1}^2 << m_{\nu_2}^2 = \Delta m_{\rm sol}^2 + m_{\nu_1}^2 << m_{\nu_3}^2 = \Delta m_{\rm atm}^2 + m_{\nu_1}^2$$
 2 scenarios :

- Degenerate N's $\rightarrow m_{N_1} = m_{N_2} = m_{N_3} = m_N$
- Hierarchical N's $\rightarrow m_{N_1} \ll m_{N_2} \ll m_{N_3}$

Our choice of input parameters Constrained MSSM $+3\nu_R$ (Majorana) $+3\tilde{\nu}_R$

- CMSSM:
 - SUSY parameters: M_0 , $M_{1/2}$, A_0 .
 - $\tan \beta < H_2 > / < H_1 > (at EW scale)$
 - sign (μ) (μ derived from EW breaking)
- NUHM
 - CMSSM parameters: M_0 , $M_{1/2}$, A_0 , $\tan \beta$ and sign (μ) .
 - Non Universal Higgs masses $M_{H_1}^2 = M_0^2(1 + \delta_1), \ M_{H_2}^2 = M_0^2(1 + \delta_2)$
- Seesaw parameters
 - $m_{
 u_{1,2,3}}$ and U_{MNS} (set by data)
 - $m_{N_{1,2,3}}$ and $R(\theta_1, \theta_2, \theta_3)$ (input)
- For numerical estimates: $(\Delta m^2)_{12} = \Delta m_{sol}^2 = 8 \times 10^{-5} \text{ eV}^2$ $(\Delta m^2)_{23} = \Delta m_{atm}^2 = 2.5 \times 10^{-3} \text{eV}^2$ $\theta_{12} = 30^\circ$; $\theta_{23} = 45^\circ$; $\delta = \alpha = \beta = 0$; $0 \le \theta_{13} \le 10^\circ$ $250 \text{ GeV} < M_0, M_{1/2} < 1000 \text{ GeV},$ $-500 \text{ GeV} < A_0 < 500 \text{ GeV} 5 < \tan \beta < 50, -2 < \delta_{1,2} < 2$

Potential Higgs sensitivity in NUHM versus CMSSM

- In CMSSM a heavy soft SUSY spectrum \Rightarrow heavy H_0 .
- In NUHM, a proper choice of these non-universal parameters, δ_1 and δ_2 , can lead us to light Higgs particles even for very large soft SUSY masses of $\mathcal{O}(1 \text{ TeV})$ if $tan\beta$ is large.
- m_{h^0} is independent of $tan\beta$ or M_{SUSY} .
- m_{H^0} becomes lighter with the increase of $tan\beta$.

Results for $BR(\tau \rightarrow \mu f_0)$

- Analytical
 - Full
 - Approximate at large $tan\beta$ and large M_{SUSY}
- Numerical
- Comparison with other channels

Analytical computations

Full Analytical Results

$$\begin{aligned} \mathrm{BR}(\tau \to \mu f_0) &= \frac{1}{4\pi} \frac{(m_\tau^2 + m_\mu^2 - m_{f_0}^2)^2 - 4m_\tau^2 m_\mu^2}{m_\tau^2 \Gamma_\tau} \frac{1}{2} \sum_{i,f} |T_H|^2 \,, \\ &\frac{1}{2} \sum_{i,f} |T_H|^2 = \frac{(m_\mu + m_\tau)^2 - m_{f_0}^2}{4 \, m_\tau} \, |c_{h^0} + c_{H^0}|^2 \,. \end{aligned}$$

$$c_{p} = \frac{g}{2m_{W}} \frac{1}{2M_{H_{p}}^{2}} \left(J_{L}^{(p)} + J_{R}^{(p)} \right) \left(H_{R}^{(p)} + H_{L}^{(p)} \right),$$

 $H_{L,R}^{(h^0,H^0)} \rightarrow \tau \mu H^{(h^0,H^0)}$ SUSY one-loop LFV vertex functions $J_{L,R}^{(h^0,H^0)} \rightarrow$ hadron form factors

-

Hadronisation \rightarrow substitution of quarks bilinears by scalar currents

$f_0(980)$ state and hadron form factors

 $f_0(980)$ isosinglet state \rightarrow rotation of the octet R_8 and singlet R_0 components of the $R(0^+)$ nonet of resonances in the $N_C \rightarrow \infty$ limit:

$$\left(\begin{array}{c} R_8\\ R_0 \end{array}\right) = \left(\begin{array}{cc} \cos\theta_S & \sin\theta_S\\ -\sin\theta_S & \cos\theta_S \end{array}\right) \left(\begin{array}{c} f_0(1500)\\ f_0(980) \end{array}\right)$$

 θ_S mixing angle uncertain \rightarrow $\theta_S=7^o$ and $\theta_S=30^o$

$$J_{L}^{(H^{0})} = \sqrt{2} c_{m} \left\{ \frac{\sin \alpha}{\sin \beta} \left[\frac{1}{2\sqrt{3}} \sin \theta_{S} + \frac{2}{3} \cos \theta_{S} \right] m_{\pi}^{2} + \frac{-\cos \alpha}{\cos \beta} \left[\frac{\sqrt{3}}{2} \sin \theta_{S} m_{\pi}^{2} - \left(\frac{1}{\sqrt{3}} \sin \theta_{S} - \frac{2}{3} \cos \theta_{S} \right) 2 m_{K}^{2} \right] \right\}$$

 $J_R^{(H^0)} = J_L^{(H^0)*}$; $c_m = F/2$ where $F \sim F_{\pi}$ = pion decay constant In the isospin limit:

$$B_0 m_s = m_K^2 - \frac{1}{2} m_\pi^2$$
; $H^0 - f_0$ coupling $\sim m_K^2 (H^0 ss \propto m_s)$

Approximate formulae of $\tau \rightarrow \mu f_0$ branching ratio

Approximate formulae valid at large $\tan \beta$ and heavy m_{SUSY}

- In this limit $H_L >> H_R$ and $H_L^{H^0} >> H_L^{h^0}$. We neglect H_R and $H_L^{h^0}$.
- $\bullet~\mbox{This}~\mbox{limit} + \mbox{MI}~\mbox{approx} \Rightarrow \mbox{chargino}/\mbox{neutralino}~\mbox{contribution}:$

$$H_{L,c}^{(H^0)} = \frac{g^3}{16\pi^2} \frac{m_\tau}{12m_W} \delta_{32} \tan^2 \beta \; ; \; H_{L,n}^{(H^0)} = \frac{1}{2} (1 - 3\tan^2 \theta_W) H_{L,c}^{(H^0)}$$

Non-decoupling of SUSY in Higgs mediated LFV processes

$$\mathsf{BR}(\tau \to \mu f_0(980))_{\mathsf{approx}} = \frac{1}{16\pi m_\tau^3} \left(m_\tau^2 - m_{f_0}^2\right)^2 \left|\frac{g}{2m_W} \frac{1}{m_{H^0}^2} J_L^{(H^0)} H_{L,c}^{(H^0)}\right|^2 \frac{1}{\Gamma_\tau}$$

$$= \left(\begin{array}{c} 7.3 \times 10^{-8} \ (\theta_{S} = 7^{\circ}) \\ 4.2 \times 10^{-9} \ (\theta_{S} = 30^{\circ}) \end{array}\right) |\delta_{32}|^{2} \left(\frac{100}{m_{H^{0}}(\text{GeV})}\right)^{4} \left(\frac{\tan\beta}{60}\right)^{6}.$$

In contrast to $BR(au o \mu \gamma) \propto \left(rac{m_W}{M_{SUSY}}
ight)^4$

Numerical results

Size of δ_{32} in Constrained SUSY-Seesaw models

- Large size of $|\delta_{32}|$ for large $\theta_{1,2}$ and/or large m_N in the degenerate and large m_{N_3} in the hierarchical neutrino case.
- Complex $\theta_{1,2}$, with large modulus (2 < $|\theta_{1,2}|$ < 3) and argument ($\pi/4 < \arg \theta_{1,2} < 3\pi/4$),and m_{N_3} between $10^{14} 10^{15} \text{ GeV} \Rightarrow |\delta_{32}| \sim 1 10$.
- perturbativity in all the gauge and Yukawa couplings $\Rightarrow |Y_{\nu}|^2/(4\pi) < 1.5$ and $|\delta_{32}| < 0.5$

・ロト ・同ト ・ヨト ・ヨト

Results for $BR(\tau \rightarrow \mu f_0)$: **CMSSM/NUHM**, hierarchical/degenerate

- $BR(\tau \rightarrow \mu f_0)_{NUHM} > BR(\tau \rightarrow \mu f_0)_{CMSSM}$ due to $m_{H^0}|_{NUHM} < m_{H^0}|_{CMSSM}$
- $BR(\tau \rightarrow \mu f_0)$ grows with m_{N_3}/m_N
- Independence of $BR(\tau \rightarrow \mu f_0)$ with m_{N_1} and m_{N_2} if $m_{N_1} < m_{N_2} < m_{N_3}$
- BR(τ → μf₀)_{deg} ≥ BR(τ → μf₀)_{hierch} but hierarchical neutrino scenario more appealing for BAU → (∂) → (∂

Getting larger $BR(\tau \rightarrow \mu f_0)$

- Large BR for large $\tan\beta\sim 50$
- The total rates do not decrease with M_{SUSY} in the NUHM ⇒SUSY particles do not decouple at large M_{SUSY} in this observable
- BR(τ → μf₀)_{H⁰} >> BR(τ → μf₀)_{h⁰}. At large tan β the H⁰ contributions are enhanced by a tan⁶ β factor whereas the h⁰ ones are suppresed

•
$$BR(au o \mu f_0)_{Approx} \sim BR(au o \mu f_0)_{Full}$$

Sensitivity to H^0 in BR($\tau \rightarrow \mu f_0$) in the NUHM

• There is Higgs sensitivity in this channel.For large $m_{N_3} \sim 5 \times 10^{14} - 10^{15}$ GeV and large tan $\beta \sim 50 - 60$ the rates are at the present experimental reach

Constraining the model parameters

- Sensitivity to Higgs sector \Rightarrow constraining mainly $\tan\beta$ and m_{H^0}
- For fixed δ_{32} , comparison with present exp bound \Rightarrow limits on large tan β and light m_{H^0}

Comparison with other LFV τ decays

$$\mathsf{BR}(\tau \to \mu f_0(980))_{\rm approx} = \frac{1}{16\pi m_\tau^3} \left(m_\tau^2 - m_{f_0}^2\right)^2 \left|\frac{g}{2m_W} \frac{1}{m_{H^0}^2} J_L^{(H^0)} H_{L,c}^{(H^0)}\right|^2 \frac{1}{\Gamma_\tau}$$

$$= \left(\begin{array}{c} 7.3 \times 10^{-8} \ (\theta_{S} = 7^{\circ}) \\ 4.2 \times 10^{-9} \ (\theta_{S} = 30^{\circ}) \end{array}\right) |\delta_{32}|^{2} \left(\frac{100}{m_{H^{0}}(\text{GeV})}\right)^{4} \left(\frac{\tan\beta}{60}\right)^{6}.$$

$$\mathsf{BR}(\tau \to \mu\eta)_{\mathcal{H}_{approx}} = \frac{1}{8\pi m_{\tau}^{3}} \left(m_{\tau}^{2} - m_{\eta}^{2}\right)^{2} \left|\frac{g}{2m_{W}} \frac{F}{m_{A^{0}}^{2}} B_{L}^{(A^{0})}(\eta) H_{L,c}^{(A^{0})}\right|^{2} \frac{1}{\Gamma_{\tau}}$$

$$= 1.2 \times 10^{-7} (\theta = -18^{\circ}) |\delta_{32}|^2 \left(\frac{100}{m_{A^0} (\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^6$$

$$\mathsf{BR}(\tau \to 3\mu)_{H_{\text{approx}}} = \frac{G_F^2}{2048\pi^3} \frac{m_\tau^7 m_\mu^2}{\Gamma_\tau} \left(\frac{1}{m_{H^0}^4} + \frac{1}{m_{A^0}^4} + \frac{2}{3m_{H^0}^2 m_{A^0}^2}\right) \left|\frac{g^2 \delta_{32}}{96\pi^2}\right|^2 (\tan\beta)^6$$

$$= 1.2 \times 10^{-7} |\delta_{32}|^2 \left(\frac{100}{m_{A^0} (\text{GeV})}\right)^4 \left(\frac{\tan\beta}{60}\right)^6$$

•
$$\tau \rightarrow \mu f_0$$
 is dominated by $H^0 \forall \tan \beta \Rightarrow$ more sensitive to H^0
• $\tau \rightarrow \mu \eta$ is dominated by A^0 (versus Z) only for $\tan \beta > 20$
• $\tau \rightarrow 3\mu$ is dominated by γ . H^0 and A^0 compete with γ only
at large $\tan \beta > 60$

- BR($\tau \rightarrow \mu f_0$) grows with tan β as tan⁶ β , with $1/m_{H^0}$ as $(1/m_{H^0})^4$, and it is approximately constant with $M_{\rm SUSY}$. The dependence with m_{N_3} and $\theta_{1,2}$ goes via the δ_{32} parameter as $BR \sim |\delta_{32}|^2 \sim |m_{N_3} \log m_{N_3}|^2$
- Much larger rates in the NUHM-seesaw than in the CMSSM-seesaw, due mainly to the lighter Higgs mass m_{H^0} in the NUHM-seesaw
- Challenging future sensitivities with SuperB factories

Additional transparencies

æ

Э

$BR(\tau \rightarrow \mu \eta)$ versus tan β

< E

-

æ

Constraints from 'viable' BAU

- BAU requires complex R ≠ 1 ⇒ complex θ_i ≠ 0. Most relevantly θ₂
- $n_B/n_\gamma \in [10^{-10}, 10^{-9}] \Rightarrow (Re(\theta_2), Im(\theta_2)) \in \text{area ('ring')}$ (WMAP in darkest ring)
- 'Optimal' m_{N_1} not far from 10^{10} GeV
- ullet The BAU [fav] windows occur at small (\neq 0) $| heta_2| \lesssim 1.5$
- smaller $|\theta_2| \Rightarrow$ smaller LFV rates

Image: A mathematic states and a mathematic states

Contributions to Δa_{μ}^{SUSY}

•
$$\Delta a_{\mu}^{\rm SUSY} \in [10^{-8}, 10^{-9}]$$
: compatible with $a_{\mu}^{EXP} - a_{\mu}^{SM} = 3.32 \times 10^{-9} (3.8\sigma)$

- * 日 * * 三

-∢ ≣⇒

æ

The results of this work have been summarised in the following references:

- E. Arganda, M. J. Herrero, J. Portoles, A. Rodriguez-Sanchez and A. M. Teixeira, "LFV in semileptonic τ decays and μ – e conversion in nuclei in SUSY-seesaw," Preprint IFT-UAM/CSIC-08-59, FTUAM/08-19. [arXiv:0810.0163 [hep-ph]].
- E. Arganda, M. J. Herrero, J. Portoles, A. Rodriguez-Sanchez and A. M. Teixeira, "Lepton Flavour Violation in charged leptons within SUSY-seesaw" Preprint IFT-UAM/CSIC-08-85, FTUAM/08-23. [arXiv:0812.2692 [hep-ph]]
- M. J. Herrero, J. Portoles, A.M. Rodriguez-Sanchez "Sensitivity to the Higgs sector of the SUSY-Seesaw Models in the Lepton Flavour Violating $\tau \rightarrow \mu f_0$ decay," Preprint IFT-UAM/CSIC-08-84, FTUAM/08-24.

Analytical results of BR($\tau \rightarrow \mu f_0$)

$$T_{H} = T_{h^{0}} + T_{H^{0}}$$

$$= \sum_{h^{0}, H^{0}} \frac{1}{M_{H_{p}}^{2}} \left\{ H_{L}^{(p)} S_{L,q}^{(p)} [\bar{u}_{\mu} P_{L} u_{\tau}] [\bar{u}_{q} P_{L} v_{q}] + H_{R}^{(p)} S_{R,q}^{(p)} [\bar{u}_{\mu} P_{R} u_{\tau}] [\bar{u}_{q} P_{R} v_{q}] \right.$$

$$+ H_{L}^{(p)} S_{R,q}^{(p)} [\bar{u}_{\mu} P_{L} u_{\tau}] [\bar{u}_{q} P_{R} v_{q}] + H_{R}^{(p)} S_{L,q}^{(p)} [\bar{u}_{\mu} P_{R} u_{\tau}] [\bar{u}_{q} P_{L} v_{q}] \Big\}$$

The Higgs boson couplings to quarks:

$$i\left(S_{L,q}^{(p)}P_L+S_{R,q}^{(p)}P_R\right)$$

$$S_{L,q}^{(p)} = \frac{g}{2m_W} \left(\frac{-\sigma_2^{(p)*}}{\sin\beta}\right) m_q , \quad q = u , S_{R,q}^{(p)} = S_{L,q}^{(p)*}$$

$$S_{L,q}^{(p)} = \frac{g}{2m_W} \left(\frac{\sigma_1^{(p)*}}{\cos\beta}\right) m_q , \quad q = d, s , S_{R,q}^{(p)} = S_{L,q}^{(p)*}.$$

$$\sigma_{1}^{(p)} = \begin{pmatrix} \sin \alpha \\ -\cos \alpha \\ i\sin \beta \end{pmatrix}, \quad \sigma_{2}^{(p)} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \\ -i\cos \beta \end{pmatrix}, \quad H_{p} = h^{0}, H^{0}, A^{0}$$

Why seesaw mechanism for m_{ν} generation

- The seesaw is the simplest mechanism to explain small m_{ν}
- If Majonana ν , the seesaw allows for large Y_{ν} couplings
- If Majorana ν, L not preserved, viable BAU via Leptogenesis

$$-\mathcal{L}_{\mathbf{Y}+\mathbf{M}} = \mathbf{Y}^{e} \bar{l}_{L} e_{R} H_{1} + \mathbf{Y}^{\nu} \bar{l}_{L} \nu_{R} H_{2} + \frac{1}{2} m_{M} \nu_{R}^{T} C \nu_{R} + h.c.$$

where $m_D = Y_
u < H_2 >$, $< H_2 > = v_2 \sin eta$

Both Dirac mass m_D Majorana mass m_M involved $\leftrightarrow M_{
u}$

$$\mathbf{M}_{\nu} = \left(\begin{array}{cc} 0 & m_D^T \\ m_D & m_M \end{array}\right)$$

 $m_D << m_M \Rightarrow$ seesaw: $m_{\nu} = -m_D^T m_M^{-1} m_D$ (light), $m_N = m_M$ (heavy)

For $Y_{
u} \sim \mathcal{O}(1), \; m_M \sim 10^{14} \; {
m GeV} \Rightarrow m_{
u} \sim 0.1 \; {
m eV} \; ({
m OK}) \; m_N \sim 10^{14} \; {
m GeV}$

Generalization to three generations also OK with data and the second

MSSM spectrum and experimental constraints

	SUSY particles			
Extended Standard Model spectrum	$SU(3)_C \times SU(2)_L \times U(1)_Y$ interaction eigenstates		Mass eigenstates	
	Notation	Name	Notation	Name
$q = u, d, s, c, b, t$ $l = e, \mu, \tau$ $\nu = \nu_e, \nu_\mu, \nu_\tau$	ã _L , ã _R Ĩ _L , Ĩ _R ΰ	squarks sleptons sneutrino	$ ilde{q}_1, ilde{q}_2 \ ilde{l}_1, ilde{l}_2 \ ilde{ u} \ ilde{ u}$	squarks sleptons sneutrino
g	ĩb	gluino	ěg	gluino
W^{\pm} $H_1^+ \supset H^+$ $H_2^- \supset H^-$	$egin{array}{c} ilde{W}^\pm \ ilde{H}_1^+ \ ilde{H}_2^- \ ilde{H}_2^- \end{array}$	wino higgsino higgsino	${ ilde \chi}_i^\pm$ (i=1,2)	charginos
$\begin{array}{c} \gamma\\ Z\\ H_1^o\supset h^0,\ H^0,\ A^0\\ H_2^o\supset h^0,\ H^0,\ A^0\\ W^3\\ B\end{array}$	$\tilde{\gamma}$ $ ilde{Z}$ $ ilde{H}_{1}^{0}$ $ ilde{W}^{3}$ $ ilde{B}$	photino zino higgsino higgsino wino bino	$ ilde{\chi}^{o}_{j}$ (j=1,,4)	neutralinos

• Mass bounds (95% C.L.) from direct searches (PDG 2008) in GeV $m_{h^0} > 92.8, m_{A^0} > 93.4, m_{\tilde{e}} > 73, m_{\tilde{u}} > 94,$

 $m_{ ilde{ au}} > 81.9, \ m_{ ilde{
u}} > 94, \ m_{ ilde{\chi}_1^0} > 46, \ m_{ ilde{\chi}_2^{\pm 1}} > 94$ LFVdecav

Outline

- Motivation/Introduction
 - ★ Constrained SUSY Models
 - ★ Neutrino masses and Seesaw Mechanism
 - \star Theoretical framework for LFV in semileptonic tau decays
 - ★ Hadronization of quark bilinears
 - ★ Experimental data (bound)
- Results:
 - ★ Analytical results
 - ★ Numerical results
 - ★ Full versus Approximate results
- Conclusions

Why SUSY?

• Experimental evidence of Physics Beyond the SM

 \star Neutrino oscillations \Rightarrow Neutrinos are massive

 \star The SM can not explain the Baryon Asimmetry of the Universe

- \star The SM does not incorporate gravitation
- \star No understanding of dark matter and dark energy

• SUSY solves the hierarchy problem of the SM and SM-Seesaw

 \star SUSY introduces a new symmetry between bosons and fermions

fermionic dof = bosonic dof SUSY \Rightarrow Cancellation of quadratic divergences of the Higgs mass

No experimental evidence of SUSY yet

• Direct searches of SUSY particles at colliders

- Indirect searches of SUSY via radiative corrections
 - ★ If SUSY particles not seen: Complementary to direct searches
 - \star Similar to past LEP hints on top quark via $\Delta \rho$ etc

Hints on SUSY: virtual SUSY particles propagate into the loops Look for observables enhanced in SUSY respect to SM prediction *Involving **Higgs sector** * **FC and LFV** suppressed in SM Non-decoupling of heavy SUSY Window to new physics

For 3 generations \Rightarrow 6 physical neutrinos: 3 ν light, 3 N heavy

$$U^{\nu T} M^{\nu} U^{\nu} = \hat{M}^{\nu} = diag(m_{\nu_1}, m_{\nu_2}, m_{\nu_3}, m_{N_1}, m_{N_2}, m_{N_3}).$$

$$m_D \ll m_M, m_D = Y_{\nu} < H_2 > \Rightarrow$$

$$\begin{split} m_{\nu}^{\text{diag}} &= U_{\text{PMNS}}{}^{T}m_{\nu}U_{\text{PMNS}} = \text{diag}\left(m_{\nu_{1}}, m_{\nu_{2}}, m_{\nu_{3}}\right), \quad (1) \\ m_{N}^{\text{diag}} &= m_{N} = \text{diag}\left(m_{N_{1}}, m_{N_{2}}, m_{N_{3}}\right), \end{split}$$

All, Y_{ν} , m_D , m_M , $U_{\rm PMNS}$, are 3 × 3 matrices; $c_{ij} \equiv \cos(\theta_{ij})$, $s_{ij} \equiv \sin(\theta_{ij})$

$$U_{\text{PMNS}} = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta} & c_{23} c_{13} \end{pmatrix} \times diag(1, e^{i\alpha}, e^{i\beta})$$
Pontecorvo-Maki-Nakagawa-Sakata matrix: $\theta_{12}, \theta_{13}, \theta_{23}, \delta, \alpha, \beta$