The importance of precision in ElectroWeak Physics

Riccardo Barbieri Four lectures on particle physics phenomenology Rome, December 19, 2016

(recalling Guido Altarelli)

The 3 ways to judge a physical theory

- 1. Its aesthetics and its synthesis
- 2. Its discovery signals
- 3. Its precise numerical consequences

(in the order one prefers and the weight one wants to give}

The Lagrangian of the SM (since 1973 in its full content)

 $\mathcal{L}_{\sim SM} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i\bar{\Psi} \not D \Psi \quad (.1975-2000)$

 $+|D_{\mu}h|^2 - V(h)$ (~1990- 2012)

 $+\psi_i\lambda_{ij}\psi_jh+h.c.$ (~2000– now)

	APV	$(g-2)_e$	$(g-2)_{\mu}$	W, Z	m_{top}
$\Delta O/O$	10^{-3}	10^{-8}	10^{-6}	$10^{-(3\div 5)}$	10^{-2}
d(cm)	10^{-5}	10^{-11}	10^{-13}	10^{-16}	10^{-16}

precision at work at many different scales

Precision in ElectroWeak Physics (with a focus on my collaboration with Guido, from 1990 on, even though the story starts much earlier and is at the route of the making of the Standard Model)

- 1. Constrain the SM parameters m_t, m_H (now mostly of historic interest)
- 2. See the "genuine" ElectroWeak loops (an important numerical test of the SM)
- 3. See early indirect signs of BSM physics (of persistent high interest even today)

The ante-LEP knowledge

(about 1970 - 1990)

Experiments:

polarized eN scattering at $q^2 = O(1)GeV^2$ Atomic Parity violation

$$R_{\nu} = \frac{\sigma(\nu_{\mu} \ N \to \nu_{\mu} \ X)}{\sigma(\nu_{\mu} \ N \to \mu \ X)} \qquad R_{\bar{\nu}} = \frac{\sigma(\bar{\nu}_{\mu} \ N \to \bar{\nu}_{\mu} \ X)}{\sigma(\bar{\nu}_{\mu} \ N \to \mu \ X)}$$

$$\sigma(\nu_{\mu} \ e), \ \sigma(\bar{\nu}_{\mu} \ e) \qquad \text{elastic}$$

$$e^{+}e^{-} \to e^{+}e^{-}, \mu^{+}\mu^{-}, \tau^{+}\tau^{-} \qquad \text{at low} \quad q^{2}$$

W-mass measurements

Defining: $\mathcal{L}_{q^2 < < M_Z^2}^{NC} = 4 \frac{G_F}{\sqrt{2}} \rho J_{\mu}^{NC} J^{\mu NC} \qquad J_{\mu}^{NC} = J_{\mu}^3 - \sin^2 \theta_W J_{\mu}^{em}$

 $\Rightarrow
ho pprox 1, \quad \sin^2 heta_W pprox 0.22$ within few %

The ante-LEP knowledge $\Rightarrow \rho \approx 1, \ \sin^2 \theta_W \approx 0.22$ within few %

Theory:

– at tree level $\,\rho=1$ from Higgs being a doublet

 $V(H) = |H_1|^2 + |H_2|^2 + |H_3|^2 + |H_4|^2$

Veltman 1977 +...

 $SO(4) = SU(2)_L \times SU(2)_R \rightarrow SU(2)_{L+R}$ "custodial symmetry" Sikivie et al 1980

- at 1 loop two types of contributions:

1. top-bottom-Goldstone bosons

2. Only 2 $\log m_h$ dependent (see below)

The ante-LEP knowledge $\Rightarrow \rho \approx 1, \ \sin^2 \theta_W \approx 0.22$ within few %

Theory:

- at 1 loop two types of contributions:

1. top-bottom-Goldstone bosons

$$\Delta \rho = 3x \qquad \delta V_{\mu} (Z \to b\bar{b}) = -\frac{g}{\cos\theta_W} x \bar{b}_L \gamma_{\mu} b_L \qquad x = \frac{G_F m_t^2}{8\pi^2 \sqrt{2}}$$

the "gaugeless" limit of the SM

$$\phi(x) = e^{i\pi_i(x)\sigma_i/v} \begin{pmatrix} 0\\ v + \frac{h(x)}{\sqrt{2}} \end{pmatrix}$$

The ante-LEP knowledge

- at 1 loop two types of contributions:

2. Only 2 $\log m_h$ dependent (see below)

Passarino, Veltman 1979 Antonelli et al 1980 Sirlin 1980

$$\Delta \rho = -\frac{3\alpha}{8\pi\cos^2\theta_W}\log\frac{m_H}{M_Z} \qquad \qquad \frac{\sqrt{2}G_F M_W^2}{\pi\alpha}(1-\frac{M_W^2}{M_Z^2}) \equiv 1 + \Delta r = 1 + \frac{11\alpha}{24\pi\sin^2\theta_W}\log\frac{m_H}{M_Z}$$

Out of all this

 \Rightarrow at summer conferences in 1989:

40 GeV < m_t < 210 GeV (90%C.L.) for m_H < 1 TeV

(including the very fresh $m_Z = 91.17 \pm 0.18 \ GeV$ by SLC)

LEP (and not only LEP) at work (from 1990 on)

The observables at the Z-pole and the W-mass Assuming quark-lepton and flavour universality, 3 effective observables only

In terms of the vector/axial couplings of the Z to the fermion f

$$g_A^f = T_{3L}^f (1 + \underbrace{\epsilon_1}_2) \qquad \qquad \frac{g_V^f}{g_A^f} = 1 - 4|Q_f|s^2(1 + \underbrace{\epsilon_3}_{c^2 - s^2})$$
 and the W-mass

$$\Delta r = \frac{1}{s^2} (-c^2 \epsilon_1 + (c^2 - s^2 \epsilon_2) + 2s^2 \epsilon_3) \qquad s^2 c^2 = \frac{\pi \alpha (M_Z)}{\sqrt{2} G_F M_Z^2}$$

+1 including flavour breaking in $Z \rightarrow bb$

Why this peculiar definition of the ϵ_i ? "Oblique" or non-"oblique" $\Pi_{ij}^{\mu\nu}(q^2) = -i[A_{ij}(0) + q^2F_{ij}(q^2)]\eta^{\mu\nu} + (q^{\mu}q^{\nu} - \text{terms})$ with $i, j = W, Z, \gamma$ or i, j = 0, 3 for B, W^3 Defining: Peskin, Takeuchi 1990

$$\begin{split} \hat{T} &= \frac{1}{m_W^2} (A_{33}(0) - A_{WW}(0)); \quad \hat{S} = \frac{c}{s} F_{30}(0); \quad \hat{U} = F_{WW}(0) - F_{33}(0) \\ \epsilon_1 &= \hat{T} + \text{smaller oblique + non oblique} \\ \epsilon_2 &= \hat{U} + \text{smaller oblique + non oblique} \\ \epsilon_3 &= \hat{S} + \text{smaller oblique + non oblique} \\ &\quad \text{non-oblique = vertices, boxes} \\ \Pi_{WW}, \Pi_{33}, \Pi_{30}, \Pi_{00} \Rightarrow 8 \ (\Pi(0), \Pi'(0)) \\ 8 &= 2 \ (\Pi_{\gamma\gamma}(0) = \Pi_{\gamma Z}(0) = 0) + 3 \ (g, g', v) + 3 \ (\hat{S}, \hat{T}, \hat{U}) \end{split}$$

U less UV-sensitive than S and T \Rightarrow only 2 independent $\log m_h$ terms

Altarelli, B, Jadach 1991

From LEP data in 1991–1993

Two different theories compared with observations:

Altarelli, B, Jadach

Altarelli, B, Caravaglios

Constraining the top mass

La Thuile, April 1994

For the Higgs boson a similar story in July 2012

EW precision	ATLAS	CMS
$m_h/GeV = 97^{+23}_{-17}$	$126.0 \pm 0.4 \pm 0.4$	$125.3 \pm 0.4 \pm 0.5$

Current SM predictions (all OK with exp)

 $g, g', v + g_S, m_t, m_h, \Delta \alpha_{had}$

 $\alpha = 1/137.035999139$

$$G_{\mu} \Rightarrow 1.1663787 \times 10^{-5} \text{ GeV}^{-2}$$

		Prediction	α_s	$\Delta lpha_{ m had}^{(5)}$	MZ	m_t
80.385 ± 0.015	M_W [GeV]	80.3618 ± 0.0080	± 0.0008	± 0.0060	± 0.0026	± 0.0046
	$\Gamma_W \; [\text{GeV}]$	2.08849 ± 0.00079	± 0.00048	± 0.00047	± 0.00021	± 0.00036
	$\Gamma_Z \; [\text{GeV}]$	2.49403 ± 0.00073	± 0.00059	± 0.00031	± 0.00021	± 0.00017
	σ_{h}^{0} [nb]	41.4910 ± 0.0062	± 0.0059	± 0.0005	± 0.0020	± 0.0005
(0.23146 ± 0.00012)	$\sin^2 \theta_{\rm eff}^{\rm lept}$	0.23148 ± 0.00012	± 0.00000	± 0.00012	± 0.00002	± 0.00002
	$P_{\tau}^{\rm pol} = \mathcal{A}_{\ell}$	0.14731 ± 0.00093	± 0.00003	± 0.00091	± 0.00012	± 0.00019
	\mathcal{A}_{c}	0.66802 ± 0.00041	± 0.00001	± 0.00040	± 0.00005	± 0.00008
	\mathcal{A}_b	0.934643 ± 0.000076	± 0.000003	± 0.000075	± 0.000010	± 0.000005
	$egin{aligned} & A_{ ext{FB}}^{0,\ell} \ & A_{ ext{FB}}^{0,c} \ & A_{ ext{FB}}^{0,b} \ & A_{ ext{FB}}^{0,b} \end{aligned}$	0.01627 ± 0.00021	± 0.00001	± 0.00020	± 0.00003	± 0.00004
	$A_{ m FB}^{ar 0, ar c}$	0.07381 ± 0.00052	± 0.00002	± 0.00050	± 0.00007	± 0.00010
	$A_{ m FB}^{ar 0,ar b}$	0.10326 ± 0.00067	± 0.00002	± 0.00065	± 0.00008	± 0.00013
	R_{ℓ}^{0}	20.7478 ± 0.0077	± 0.0074	± 0.0020	± 0.0003	± 0.0003
	R_c^{0}	0.172222 ± 0.000026	± 0.000023	± 0.000007	± 0.000001	± 0.000009
	R_b^0	0.215800 ± 0.000030	± 0.000013	± 0.000004	± 0.000000	± 0.000026

(negligible uncertainty from m_h variations)

de Blas et al, 2016

The state of the art on 2 most precisely known quantities

$$M_W, \qquad \sin^2 \theta_{eff}^l \equiv \frac{1}{4} \left(1 - \frac{g_V^l}{g_A^l}\right)$$

	$\delta M_W/MeV$	$\delta \sin^2 \theta^l_{eff} / 10^{-5}$
higher orders	5	5
parametric	9	12
exp. current	15	16
exp. FCC-ee	0.5	0.3

"parametric": $\Delta m_t = 1 \; GeV, \; \Delta \alpha_{had}^{(5)} = 3.3 \cdot 10^{-4}, \; \Delta \alpha_S(M_Z) = 7 \cdot 10^{-4}$

Degrassi, Gambino, Giardino 2014

general current fit

de Blas et al, 2016

SM EW loops seen with about 20% precision

A significant comparison

A relevant example of BSM constraint from EW precision

Consider any theory where the hVV-coupling $_{\kappa_V}$ deviates from the SM

Two other complementary directions in (the use of) precision data

1. The SM as an effective low-energy theory

$$\mathcal{L}_{eff}(E < \Lambda) = \mathcal{L}_{SM} + \sum_{i,p>0} \frac{c_{i,p}}{\Lambda p} \mathcal{O}_i^{(4+p)}$$

2. Precision in Higgs couplings

EW precision with effective operators $\mathcal{L}_{eff}(E < \Lambda) = \mathcal{L}_{SM} + \sum_{i,p>0} \frac{c_{i,p}}{\Lambda^p} \mathcal{O}_i^{(4+p)}$

95% lower bounds on $\Lambda/{\rm TeV}$ on one operator at a time

	$c_i = -1$	$c_1 = +1$	$c_i = -1$	$c_i = +1$
$(H^+\tau^a H)W^a_{\mu\nu}B_{\mu\nu}$	9.7	10	11.1	18.4
$ H^+D_\mu H ^2$	4.6	5.6	6.3	15.4
$i(H^+D_\mu\tau^a H)(\bar{L}\gamma_\mu\tau^a L)$	8.4	8.8	9.8	14.8
$i(H^+D_\mu\tau^a H)(\bar{Q}\gamma_\mu\tau^a Q)$	6.6	6.8	9.6	8.7
$i(H^+D_\mu H)(\bar{L}\gamma_\mu L)$	7.3	9.2	14.8	9.2

caveats:

In general many more operators already at dim=6 Correlations lost

What is the "true" meaning of this bounds?

B, Strumia 2000

deBlas et al 2014

Precision in Higgs couplings

EW precision in principle more constraining on κ_V caveats:

Need to specify the cutoff and be sure of no other contribution

A model example (twin Higgs)

B, Hall, Harigaya 2016

Precision and SM vacuum stability

$$V(\varphi) = \mu^{2} |\varphi|^{2} + \lambda |\varphi|^{4} \qquad m_{W} = gv/\sqrt{2}$$

$$\frac{d\lambda}{d \log Q} = \frac{3}{2\pi^{2}} \Big[\lambda^{2} + \frac{1}{2} \lambda y_{t}^{2} - \frac{1}{4} y_{t}^{4} + \cdots \Big] \qquad m_{H} = 2\sqrt{\lambda}v$$

$$m_{t} = y_{t}v$$
With current values of $m_{H}, m_{t}, \alpha_{S}, \ldots$

$$\lambda(\approx 10^{11} \text{ GeV}) < 0$$

 \Rightarrow A second minimum of V at $\phi\gtrsim 10^{11}~GeV$ to which v should tunnel in a very long time (>> t_{Univ})

Degrassi et al, 2013

- Is there a real meta-stability at $\phi < M_{Pl}$?
- Any experimental implication?
- Connection to inflation?
- Is it a problem?

The 3 ways to judge a physical theory

1. Its aesthetics and its synthesis

2. Its discovery signals

3. Its precise numerical consequences

Guido and I both liked precision in physical theories I advocate that this be kept as a key criterium