A discussion on the 750 GeV diphoton anomaly

Marco Nardecchia

DAMTP and Cavendish Laboratory, University of Cambridge

Outline

- BSM at the beginning of Run 2
- Diphoton anomaly phenomenological aspects
- Weakly coupled extensions
- Strongly coupled extensions
- Conclusions

New Physics

- •SM is very successful in describing physics up to the EW scale
- •SM is not a complete theory (neutrino masses, dark matter, baryon asymmetry)

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum \frac{c_i^{(d)}}{\Lambda^{(d-4)}} O_i^{(d)} (\text{SM fields}).$$

•Big question is \\ \frac{7}{2}

- Unfortunately, no unique indication from observed BSM physics
 - I. Neutrino masses, from Dirac neutrino to GUT see-saw
 - 2. Dark Matter, from axions to Wimpzillas
 - 3. Baryon asymmetry, from EW baryogenesis to GUT baryogenesis
- •However we have a theoretical guideline....

New Physics

Upper bound from naturalness of the Higgs mass

$$\Lambda < 1 \text{ TeV}$$

- Main frameworks to solve this problem: composite Higgs and Supersymmetry
- Prediction: new colored states (the lighter the better)

• Instead....

Flavour Anomalies

Z. Ligeti, Moriond QCD 2016

Diphoton anomaly

[ATLAS-CONF-2015-081]

Bin[GeV]	650	690	730	770	810	850
$N_{ m events}$	10	10	14	9	5	2
$N_{\rm background}$	11.0	8.2	6.3	5.0	3.9	3.1

[1512.05777]

- ATLAS: local significance of 3.9σ
- ATLAS: best fit is obtained for $\alpha = \Gamma/M = 6\%$
- CMS: local significance of 2.6σ (narrow width)

Bin[GeV]	700	720	740	760	780	800
N_{events} (EBEB)	3	3	4	5	1	1
$N_{\text{background}}$ (EBEB)	2.7	2.5	2.1	1.9	1.6	1.5
$N_{\rm events}$ (EBEE)	16	4	1	6	2	3
$N_{\text{background}}$ (EBEE)	5.2	4.6	4.0	3.5	3.1	2.8

[1512.05777]

After Moriond EW 2016

- ATLAS: spin 2 analysis + re-analysis of Run 1
- CMS: improved detector calibration + analyzed dataset recorded a 0T

- Local significance: 2.9σ
- Combining with Run 1 data: 3.4σ
- Preference for a narrow width

Warning

- We need more data, most likely just a statistical fluctuation
- However... more than 250 pre-prints on the arXiv
- I will try to give a (biased,partial and simplified) summary on possible interpretations of the anomaly in terms of New Physics, my apologies for the missing references/works/ideas
- •I will consider only the simplest topology, interesting options have been discussed

•Focus on the s-channel 2 body decay, spin 0 or 2

Combinations

[1603.06566]

• Typical cross section: 1-10 fb

Consistency with LHC 8 TeV

$$\sigma(pp \to \gamma \gamma) \approx \begin{cases} (0.5 \pm 0.6) \, \text{fb} & \text{CMS [2]} & \sqrt{s} = 8 \, \text{TeV}, \\ (0.4 \pm 0.8) \, \text{fb} & \text{ATLAS [3]} & \sqrt{s} = 8 \, \text{TeV}, \\ (6 \pm 3) \, \text{fb} & \text{CMS [1]} & \sqrt{s} = 13 \, \text{TeV}, \\ (10 \pm 3) \, \text{fb} & \text{ATLAS [1]} & \sqrt{s} = 13 \, \text{TeV}. \end{cases}$$

- ullet An enhancement of the cross section is required $m ~r\equiv \sigma_{13\,TeV}/\sigma_{8\,TeV}$
- ullet Consistency (at 2 σ) with LHC8 requires r>3.5
- $\bullet \text{ Cross section is given by } \sigma(pp \to S \to \gamma \gamma) = \frac{2J+1}{M\Gamma s} \bigg[\sum_{\wp} C_{\wp\bar\wp} \Gamma(S \to \wp\bar\wp) \bigg] \Gamma(S \to \gamma \gamma)$
- Gain factor depends only on the type of p.d.f responsible for the production

$r_{b\overline{b}}$	$r_{c\overline{c}}$	$r_{s\bar{s}}$	$r_{dar{d}}$	$r_{u\bar{u}}$	r_{gg}	$r_{\gamma\gamma}$
5.4	5.1	4.3	2.7	2.5	4.7	1.9
\checkmark	\checkmark	\checkmark	×	X	\checkmark	×

- Focus on two cases: gluon-gluon and bottom-bottom production
- Another option: change topology and kinematics

Production mechanism

Large partial width in diphoton

$$\Gamma_{\gamma\gamma}/M\gtrsim 10^{-6}$$
 narrow width $\Gamma_{\gamma\gamma}/M\gtrsim 10^{-4}$ large width

$$\Gamma_{\gamma\gamma}/M\gtrsim 10^{-4}$$
 large width

[1512.04933

• In the gluon-gluon case, total width (if large) is dominated by decays into other channels

Other decay channels

final	$\sigma \text{ at } \sqrt{s} = 8 \text{TeV}$			implied bound on
state f	observed	expected	ref.	$\Gamma(S \to f)/\Gamma(S \to \gamma \gamma)_{\rm obs}$
$\gamma\gamma$	< 1.5 fb	< 1.1 fb	[8, 9]	$< 0.8 \ (r/5)$
$e^+e^-, \mu^+\mu^-$	< 1.2 fb	< 1.2 fb	[10]	$< 0.6 \ (r/5)$
$\tau^+\tau^-$	< 12 fb	< 15 fb	[11]	< 6 (r/5)
$Z\gamma$	< 11 fb	< 11 fb	[12]	< 6 (r/5)
ZZ	< 12 fb	< 20 fb	[13]	< 6 (r/5)
Zh	< 19 fb	< 28 fb	[14]	$< 10 \ (r/5)$
hh	< 39 fb	<42 fb	[15]	$< 20 \ (r/5)$
W^+W^-	< 40 fb	$<70~\mathrm{fb}$	[16, 17]	$< 20 \ (r/5)$
$t \bar{t}$	< 450 fb	< 600 fb	[18]	$< 300 \ (r/5)$
invisible	< 0.8 pb	-	[19]	$< 400 \ (r/5)$
$b\overline{b}$	$\lesssim 1 \mathrm{pb}$	$\lesssim 1\mathrm{pb}$	[20]	$< 500 \ (r/5)$
jj	$\lesssim 2.5 \text{ pb}$	-	[7]	$< 1300 \ (r/5)$

[1512.04933]

 Electroweak gauge invariance suggests (forces) the presence of other decay channels accessible at the LHC

operator
$$\frac{\Gamma(S \to Z\gamma)}{\Gamma(S \to \gamma\gamma)} \quad \frac{\Gamma(S \to ZZ)}{\Gamma(S \to \gamma\gamma)} \quad \frac{\Gamma(S \to WW)}{\Gamma(S \to \gamma\gamma)}$$

$$\frac{g_2^2 S \left(\frac{W_{\mu\nu}^2}{2\Lambda_W} + \frac{W_{\mu\nu}\tilde{W}^{\mu\nu}}{2\tilde{\Lambda}_W}\right)}{WW \text{ only } 2/\tan^2\theta_W \approx 7 \quad 1/\tan^4\theta_W \approx 12 \quad 2/\sin^4\theta_W \approx 40$$

$$BB \text{ only } 2\tan^2\theta_W \approx 0.6 \quad \tan^4\theta_W \approx 0.08 \quad 0$$

$$g_1^2 S \left(\frac{B_{\mu\nu}^2}{2\Lambda_B} + \frac{B_{\mu\nu}\tilde{B}^{\mu\nu}}{2\tilde{\Lambda}_B}\right)$$

• An interesting possibility: S decays into a dark sector

$$-0.3 < \Lambda_B/\Lambda_W, \tilde{\Lambda}_B/\tilde{\Lambda}_W < 2.4$$

Decays into EW gauge bosons

[A discussion with David Marzocca (ETH)]

- In general we expect to see other decays at the LHC
- There is an evil region where Br are all small, more quantitative studies are needed to compare with the LHC

A Dark Matter connection

thermal freeze-out (early Univ.) indirect detection (now) direct detection S as mediator to a dark sector production at colliders

Extra Q = Dark Matter?

- 1) The connection with Ω_{DM} is interesting on its own;
- 2) if $\Gamma/M \sim 0.06$ allows to hide many particles that enhance $S \to \gamma \gamma$;
- 3) if $\Gamma/M \sim 0.06$ allows to get tree level $S \to \mathsf{DM}\,\mathsf{DM}$ decays.

Direct detection bounds are (weak) irrelevant if S is a scalar (pseudo-scalar).

Weakly coupled models

• Let's focus on the gg production mechanism, a simple renormalizable picture is given by SM extensions with vector-like fermions

A simple toy model

Goertz, Kamenik, Katz, MN 1512.08500 same mechanism in O(100) papers

$$S \sim (\mathbf{1}, \mathbf{1}, 0)$$
 $Q \sim (\mathbf{3}, \mathbf{1}, 0) \times N_Q$
 $E \sim (\mathbf{1}, \mathbf{1}, Y) \times N_E$

$$\mathcal{L} \supset iy_q S \, \overline{Q} \gamma^5 Q + iy_e S \, \overline{E} \gamma^5 E$$

A large diphoton rate is required

$$\Gamma(S \to \gamma \gamma) = M \frac{\alpha^2}{16\pi^3} Y^4 N_E^2 y_e^2 \tau_E |\mathcal{P}(\tau_E)|^2$$

$$\tau_E = 4M_E^2 / M^2$$

$$M_E \to 400 \text{ GeV}$$

$$T_E = 4M_E^2 / M^2$$

$$T_E = 4M_E^2 / M^2$$

 $Y^4y_e^2N_e^2\approx 1.5$ for a top-like state

• Large Width $\Gamma_{\gamma\gamma}/M\gtrsim 10^{-4}$ \longrightarrow $Y^4y_e^2N_e^2\gtrsim 10^3$

Calculability in perturbative models

How large can the couplings and/or the number of states be?

- Other possible issues
 - 1) Landau pole can be very close to the TeV scale
 - 2) Beta function changes very rapidly compared with the coupling itself

$$\mu \frac{d}{d\mu} y = \beta_y \qquad \qquad \mathcal{A} = y + \beta_y \log\left(\frac{\mu}{E}\right)$$
 Possible criterion
$$\left|\frac{\beta_y}{y}\right| < 1$$

- 3) Vacuum stability, new interactions (and new scalars) can modify the scalar potential
- 4) Unitary implications from 2 —> 2 scatterings of mediators

[with L. Di Luzio and J. Kamenik, tomorrow?]

[1512.07624,

1512.08307, 1512.07889, 1512.08500, 1602.01460.

 Strong constraints, a large width makes the interpretation of this anomaly in terms of weakly coupled models very challenging

The Usual Suspects

Most economical attempt at the renormalizable level: 2 Higgs Doublet Model

- Production: directly trough quarks at the tree level
- Decay into photons: trough loops of SM particles
- TREE level decays are available, for example

$$\frac{\Gamma_{\gamma\gamma}}{\Gamma_{t\bar{t}}} \simeq \frac{2\alpha^2 m_t^2}{27\pi^2 M^2} \left[\pi^2 + 4\log^2(M/m_t)\right]^2 \simeq 10^{-5}$$

1512.04921 1512.05332 1512.05623 1512.06587 1512.07497 1512.07616 1512.08508

see also

Excluded by direct searches

C.f.

- Requires other mediators in the loop as in the previous case (but now with more constraints: Higgs, EWPT, flavour, ...)
- MSSM: is a special 2HDM + other states (in particular stops and higgsinos)

- Enhancement for extreme values of the parameters (large Aterms, low values for soft masses) within the order of magnitude required to fit the diphoton data
- RPV-MSSM has problems too... 1512.07645
- SUSY is not the MSSM, extensions can reproduce the effect

Candidates in strongly coupled models

Composite neutral bosons of QCD

Strongly coupled models

- The 750 GeV state is a composite state of a strongly coupled sector
- Simplest idea: vector-like confinement (not direct connection with the EW breaking)

	$G_H = SU(N)$	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	[From 1602.01092,
Ψ_D			1	1/3	see also
Ψ_L		1		-1/2	1512.04850, 1512.04933
$ar{\Psi}_D$			1	-1/3	1602.07297
$ar{\Psi}_L$		1		1/2	

- SU(N) gauge dynamics similar to QCD
- S is a pseudo-Goldstone boson associated to the breaking of the global symmetry

$$SU(5)_L \times SU(5)_R \to SU(5)_V$$

Extra colored and charged "pions" are predicted

$$\pi \sim (\mathbf{8}, \mathbf{1}, 0) \oplus (\mathbf{3}, \mathbf{2}, -5/6) \oplus (\overline{\mathbf{3}}, \mathbf{2}, +5/6) \oplus (\mathbf{1}, \mathbf{3}, 0) \oplus \oplus (\mathbf{1}, \mathbf{1}, 0)$$

Di-gluon and Di-photon couplings are generated by WZW terms

$$\frac{Ng_3^2}{32\sqrt{15}\pi^2 f} \phi \, \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} - \frac{3Ng_2^2}{64\sqrt{15}\pi^2 f} \phi \, \epsilon^{\mu\nu\rho\sigma} W^{\alpha}_{\mu\nu} W^{\alpha}_{\rho\sigma} - \frac{Ng_1^2}{64\sqrt{15}\pi^2 f} \phi \, \epsilon^{\mu\nu\rho\sigma} B_{\mu\nu} B_{\rho\sigma}$$

ullet Same as in QCD $\pi^0 o \gamma \gamma$

Strongly coupled models

- Other phenomenological aspects of this class of theories:
 - 1) Large coset space contains coloured pseudo-goldstone
 - 2) $f \gtrsim v$, other strongly coupled resonances accessible at the LHC
 - 3) These models are automatically MFV (Minimally Flavour Violating) because of the gauge symmetry
 - 4) Other options can be explored (for example S is associated with an anomalous current like the eta' in QCD) [in particular see 1602.07297]
 - 5) Possible dark matter candidate(s) because of extra symmetries
- The bad side: there is no direct link with the EW symmetry breaking. More ambitious idea: Composite Higgs and S from the same strong dynamics

- In particular Higgs and S pseudo-NGB
 - Non trivial G/H construction: UV realisation?
- Flavour through partial compositeness

$$\mathcal{L}_{\text{mix}} = \epsilon_L^i \bar{f}_L^i \Psi_R^i + \epsilon_R^i \bar{f}_R^i \Psi_L^i \quad \Longrightarrow \quad y_{\text{SM}}^{ij} \sim \epsilon_L^i \epsilon_R^j g_*$$

ullet Large width $\,S
ightarrow \overline{t} t$

 $SU(2)_L \times U(1)_Y$

[1512.04929, 1512.04933, 1512.05330, 1512.07242,...]

Spin 2

A motived candidate: KK graviton from a warped extra-dimension

$$\mathcal{L} \sim \frac{1}{M_{\rm Planck}} T^{\mu\nu} h_{\mu\nu}^{(0)} + \frac{1}{M_{\rm Planck} e^{-kb}} T^{\mu\nu} \sum h_{\mu\nu}^{(m)}$$

- Massless graviton is Plank suppressed, while the KK modes can have a TeV strength
- Couplings are universal, in particular $\Gamma(h_{\mu\nu}^{(1)} \to \gamma\gamma) = \frac{1}{8}\Gamma(h_{\mu\nu}^{(1)} \to gg)$
- Diphoton anomaly can be reproduced but now we have also another prediction

$$\Gamma(h_{\mu\nu}^{(1)} \to \gamma\gamma) = 2\Gamma(h_{\mu\nu}^{(1)} \to \ell^+\ell^-)$$

• At the moment, absence of peaks in di-leptons in Run 2 data

$$\sigma(pp o S o \ell^+\ell^-) < 5 ext{ fb}$$
 [ATLAS-CONF-2015-081] $\sigma(pp o S o \ell^+\ell^-) \lesssim 3 ext{ fb}$ [CMS-EXO-15-004]

- Another candidate: a resonance from a strongly interacting theory, however difficult to motivate the absence of detection of states with lower spin
- Also, away from the energy-tensor limit, scatterings have very bad UV behaviour

Conclusions

- Experimental situation needs to be clarified, we need more data
- Information on the width is crucial for model building
- We expect to see more decays channels at the LHC, in particular decays into EW gauge bosons
- It is very plausible to have more states at or below the TeV
- Who ordered that? Which is the role of S in connection with other open issues of the SM?
 (Naturalness problem and origin of the EW scale, DM, flavour,)