THz Electron Gun Development

Emilio Nanni 3/30/2016

Outline

- Motivation
- Experimental Demonstration of THz Acceleration

- THz Generation
- Accelerating Structure and Results
- Moving Forward
 - Parametric THz Amplifiers
 - THz Photo-Injector
- Conclusions

Outline

• Experimental Demonstration of THz Acceleration

- THz Generation
- Accelerating Structure and Results
- Moving Forward
 - Parametric THz Amplifiers
 - THz Photo-Injector
- Conclusions

Ultrafast Science Enabled by Accelerators

• X-rays and electrons are used at SLAC for ultrafast science

Coherent X-rays from LCLS (2009)

Ultrafast Electron Diffraction (2015)

SLAC

New Accelerators Providing Improved Performance?

Accelerators for the Next Generation of Ultrafast Science

S-band Accelerators 30 MeV/m

THz Accelerators GeV/m SLAC

Klystron Source 10s MW, μs, ~3 GHz Optically-Driven THz Source MW, ns, ~0.3 THz

Higher Frequencies Can Achieve Higher Gradients

- Accelerating gradient is limited by breakdown (i.e. arcing or plasma formation)
- Breakdown threshold for surface electric field $E_{s} \propto f^{1/2}$
- Strongly focused THz pulses on metal surfaces have demonstrated operation with ~1 GV/m surface fields
- For electron gun, increased electric field at the emission surface improves emittance $\propto E_s^{1/2}$

Huang, W. R., Nanni E. A., et al., *Nature Scientific Reports* 5 (2015). Huang, W. R., Accepted for Talk, *CLEO* (2016). Wimmer L. *et al.*, Nature Phys. 10, 432–436 (2014).

Advantages of Operating at THz Frequencies

SLAC

Additional advantages of high frequency structures:

- Shunt impedance increases as $f^{1/2}$
- RF pulse energy decreases as f^{-2}

E. A. Nanni, et al., "mm-Wave Standing-Wave Accelerating Structures for High-Gradient Tests." IPAC 2016

Comparison Between RF and THz Accelerators

SLAC

Scaling structure design from S-band to the THz range

Parameters	for	100	MeV/m	Gradient

SLAC/MIT 110 GHz High-Gradient Research

Pulsed Heating in High-Frequency Structures

- Surface temperature rise during RF pulse causes damage
- Surface resistivity increases as $f^{1/2}$
- Cavity fill time drops dramatically

SLAC

10000

10

3 GHz Structure

20

Outline

- Motivation
- Experimental Demonstration of THz Acceleration

- THz Generation
- Accelerating Structure and Results
- Moving Forward
 - Parametric THz Amplifiers
 - THz Photo-Injector
- Conclusions

THz Generation via Optical Rectification (OR)

- Optical rectification (OR): difference frequency generation occurs between two spectral components of the same pulse
- OR occurs at frequencies which are within the bandwidth of the pulse $\Delta \omega > \Omega$ Spectrum from Optical Rectification

THz Generation Setup

SLAC

Optics Vol. 62 Issue 18 (2014): 1486-1493.

THz Pulse Properties

- Single cycle THz pulse (~2 ps) centered at 0.45 THz
- THz beam propagates in free space over significant distances due to high Gaussian content
- 10 µJ pulse measured ~1 m from source

Outline

- Motivation
- Experimental Demonstration of THz Acceleration

- THz Generation
- Accelerating Structure and Results
- Moving Forward
 - Parametric THz Amplifiers
 - THz Photo-Injector
- Conclusions

Electron Beam Parameters

- 60 kV DC photo-injector used as electron source
- Photoemission with UV pulse (quadrupled from 1030 nm IR) UV Pulse = 0.7 μ J, 250 nm, 350 fs
- PARMELA is used to simulate from photo-emission to detection

Dielectrically Loaded Circular Waveguide

- Traveling wave structure is best for coupling broad-band single cycle pulse
- Phase-velocity matched to electron velocity with thickness of dielectric

Copper Inner Diameter = $940 \mu m$ Eused Silica Inner Diameter = 400μ

Fused Silica Inner Diameter = 400 µm

Dispersion in Dielectrically Loaded Waveguide

- Thick dielectric required to achieve desired phase velocity
- Waveguide is dispersive for wide bandwidth of THz pulse

DC Gun and THz LINAC

Electrons Accelerated by THz Pulse

- Measured energy spectrum for 59 keV start energy
- Modeled on-axis electric field of 8.5 MV/m
- Electron bunch $\sigma_z = 45 \ \mu m$

Optimizing THz Acceleration

- Energy gain depends on initial electron energy and arrival time of THz pulse
- Increase in energy decreases phase slippage
- Single particle model with 8.5 MV/m electric field or accelerating gradient of 2.5 MeV/m for 3 mm

Outline

- Motivation
- Experimental Demonstration of THz Acceleration
 - THz Generation
 - Accelerating Structure and Results

- Moving Forward
 - Parametric THz Amplifiers
 - THz Photo-Injector
- Conclusions

Future Directions @ SLAC

- How do we extend this work to achieve high-gradients >100 MeV/m?
- Standing wave accelerating structures reduce peak power to achieve high gradient
 - Require narrow-band, nanosecond THz pulses
 - Amplifier would be best source to control THz pulse
- Coherently amplified narrow-band THz source
 - ns IR pump lasers are cheap and compact with pulsed energies from 100 mJ – 1 J , 0.1-1 kHz
 - A THz optical parametric amplifier meets our requirements and under development at SLAC

Approach to Operating OPAs at THz Frequencies

- Long nonlinear crystal length is required to achieved high conversion efficiency
- Phase mismatch avoided by periodic poling of nonlinear OPA media ω_{THz} $\boldsymbol{\omega}_{\text{THz}}$

Optical Pump: 1064 nm, 250 mJ, 120 Hz,10 ns

- Periodically poled Lithium Niobate (PPLN)
 - Low loss α_{THz} < 3 cm⁻¹, High nonlinear index d_{eff} \approx 25 pm/V

Approach to High Efficiency and MW Peak Power

SLAC

- >99% of the energy is at the idler frequency $\omega_2 = \omega_1 \omega_{THz}$
- Invert poling period, use idler as a new pump signal

Poling period is inverted every time pump is depleted

Expanding Capabilities in THz Range

- Laser system installation, solid-state source testing, THz component testing
- Precision dielectric constant measurements of Lithium Niobate

Outline

- Motivation
- Experimental Demonstration of THz Acceleration
 - THz Generation
 - Accelerating Structure and Results

- Moving Forward
 - Parametric THz Amplifiers
 - THz Photo-Injector
- Conclusions

Challenges for RF Guns at High Frequency

SLAC

- A standing wave gun could prove difficult in the THz range
- Energy gain per cell decreases with increasing frequency $\mathcal{E}_{1/2 \text{ Cell}} \approx E_0 \langle \sin \theta \rangle_{\pi/2 \to 0} \lambda / 4$ Best Case!
- Need energy to be high enough to limit phase slippage
 - Improved beam quality
 - Longer subsequent cavities, more energy gain
 - Practical limit to number of cells

 $\mathcal{E}_{1/2 \text{ Cell}} \approx 100 \text{ keV}$ $E_0 \approx 0.63 \text{ GeV/m}$ $\lambda \approx 1 \text{ mm}$ $f \approx 300 \text{ GHz}$

THz Electron Gun for Ultrafast Science

- 3.5 cell RF photo-injector at 263 GHz
- Target exit energy of 1 MeV for UED applications
- Cavity cell lengths optimized to avoid phase slippage

Energy Gain in Electron Gun

- 1 MW, 2 ns pulse required to achieve 1MeV exit energy
- Peak surface field of ~1 GV/m

Femtosecond Electron Bunch Production

- For 100 fC, 4 fs, electron bunch:
 - Initial Transverse Emittance 3 nm-rad
 - Final Transverse Emittance 7 nm-rad
 - x_{rms}=14 micron, 0.02% energy spread

Conclusions

si ac

- Development of efficient narrow-bandwidth THz sources needed to make THz accelerators practical
- THz OPAs can provide pulse frequency, bandwidth and length needed for many applications
- THz photo-injector: 1 MeV, <10 fs, 10 micron, 100 fC electron bunch with 2 mJ THz pulse
 - Ideal for ultrafast electron diffraction
 - Order of magnitude improvement over state-of-the-art in timing resolution, charge and energy spread
- THz accelerators powered by optical sources have the potential to enable compact high-gradient accelerators

Acknowledgements

MIT/DESY/CFEL

Franz Kärtner Kyung-Han Hong W. Ronny Huang Koustuban Ravi Liang Wong Arya Fallahi

<u>**U. Toronto**</u> R. J. Dwayne Miller Gustavo Moriena <u>SLAC</u> Sami Tantawi Matthias Hoffmann Valery Dolgashev Jeff Neilson Craig Burkhart Philippe Hering Gordon Bowden SLAC

Funding :

Questions?