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Echo Seeding Results 



The Need to Seed 

FEL temporal pulse 

FEL spectrum 

SASE FEL Dream FEL 

Seeding would make an FEL an 
extraordinarily good laser 

•  Free-electron lasers (FELs) use relativistic 
electrons to produce intense pulses of 
tunable radiation  

•  Shot noise produces pulses with limited 
temporal coherence and a spectrum 
comprised of random, fluctuating spikes 

 
•  Seeding is the introduction of a coherent 

signal that is amplified to significantly 
increase the FEL spectral brightness 



Seeding Motivation and Techniques 

 
Seeding approaches 

•  Direct Seeding - High Harmonic Generation (HHG) – [State Of The Art: 38 nm] 
-  FEL amplification EM input, usu. harmonic of 800nm generated in noble gas 
-  Limited to >20nm by 10-6 conversion efficiency. Seed must exceed shot noise in beam. 

•  High Gain Harmonic Generation (HGHG) – [4 nm, 65th harm from 260nm] 
-  Harmonic density bunching. Limited to <15th harmonic in single stage 
-  Cascade multiple stages w/fresh beam to reach soft x-rays . Demonstrated and soon 

in use @4nm 
•  Echo-Enabled Harmonic Generation (EEHG) – [32 nm, 75th harm from 2.4um] 

-  Harmonic density bunching. Small energy modulations required. Reach soft x-rays from 
UV lasers in single stage. 

-  Highly nonlinear phase space manipulation and preservation challenging. 
•  Self Seeding (HXRSS & SXRSS) 

-  Monochromatized FEL seeds itself. Demonstrated and in use. 
-  Damage & rep rate limits. Pedestal (SXRs). 

 

Ultimate goal: Generate transform limited, stable, and controllable x-ray pulses 
Capability requests for LCLS-II beyond the baseline include: 

•  Pump-probe synchronization to <20 fs (X-ray/optical, X-ray/X-ray) 
•  High res spectroscopy & dynamics:  

•  Tunable time/BW tradeoff @0.25-1.25 keV (10-200 fs) 

 
 



Harmonics through density bunching with lasers 
High-Gain Harmonic Generation (HGHG) 
Single modulator-chicane system 

 Energy modulation in a modulator 
 Energy modulation converted to density modulation 
 Coherent radiation at  nk  amplified to saturation in a radiator 

Yu et al., PRL,  2003 
Yu et al., Science,  2000 

modulator radiator 

 Harmonic number n ≈ ∆E /σE   

Slide courtesy D. Xiang 



Limitations on single stage HGHG 

Modulator exit Chicane exit Current distribution 

•  Low up-frequency conversion efficiency: 

•  But seeded FEL wants:   Bunching AND Gain 
•  Outcome: Bunching (large ∆E ) OR Gain (small ∆E) 

Slide courtesy D. Xiang 



Echo-Enabled Harmonic Generation (EEHG) 

G. Stupakov, PRL 102, 074801 (2009) 
D. Xiang and G. Stupakov, 12, 030702 (2009)  

Advantages 
•  Only small energy modulation needed 
•  UV laser converted to soft x-rays in single stage 
•  Tunable through dispersion 
•  Relatively insensitive to e-beam phase space 

distortions 

Challenges 
•  Preservation of fine phase space 

correlations 
•  Sensitive to intrabeam scattering, 

diffusion, and laser quality 
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First EEHG experiments at SLAC’s NLCTA

“The theory and experimental realization of EEHG are both groundbreaking, with profound implications for FEL science.” 
--Nature Photonics, 4, 739 (2010)
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D. Xiang et al., PRL 105, 114801 (2010) 
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D. Xiang, et al, PRL 108, 024802 (2012). 

ECHO-7 (2012) 

Echo 
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•3yr Echo-7 experimental effort 
proposed and funded in 2009 by 
LDRD and BES
•Progressive facility upgrades 
enabled staged demonstration of 
higher harmonics
• Basic physics of EEHG verified
• phase space correlations can be 
preserved
•experimental observations well 
explained by EEHG theory



EEHG in High Harmonic Regime 

•  New 3yr Echo-75 experimental effort proposed 
and BES funded in 2012 
•  Extensive facility upgrades 
•  Moved entire Echo line (modulators, chicanes) 
upstream by 3m to accommodate new 
structures  
• Replaced X1 linacs with single RDDS 
(better alignment, no SLED) Installed 
chicane bypass (cleaner phase space)  
• Upgraded laser systems and PLCs U2 
retuned to be resonant with 2400 nm laser  
• New OPA purchased and commissioned  
• RF undulator installed (PhD Thesis, M. Shumail, 
Stanford, 2014; S. Tantawi, et al PRL 112, 164802 
(2014)) 



EEHG vs HGHG Bandwidth comparison 

 

Two effects:  

•  different dependence of EEHG and 
HGHG on local phase space 
distribution and 

•  finite length laser pulse 

0.38 nm 1 nm 

•  Non-linear curvature adds more 
bandwidth to HGHG by shifting 
wavelengths across the beam 

•  front is compressed, back is 
decompressed 

•  EEHG less sensitive because strong 
initial R56 removes this smooth 
variation 

EEHG HGHG 

EEHG signal has narrower 
bandwidth  

(Δλ/λ=0.23% vs 0.62 %) 



Central wavelength stability 

•  Reduced sensitivity of EEHG to 
phase space distortions stabilizes 
central wavelength 

•  RF timing drift or jitter in e-beam can 
change chirp –> shift in central 
wavelength 

•  OR, timing jitter between laser and 
e-beam (ie, energy jitter) changes 
laser overlap and selects differently 
chirped region  

laser 

E-beam 

EEHG 

HGHG 



160 nm 155 nm 

Echo HGHG 

•  Echo appears insensitivity to e-beam phase space distortions leads to 
more stable central wavelength and narrower bandwidth 

Simultaneous ECHO and HGHG in same beam 



Pushing EEHG to the ultra-high harmonic regime 

•  Designed and built new EUV spectrometer 
•  Installed linac to boost beam energy to 
160-190 MeV (access shorter wavelengths, 
more tunability) 
•  Installed 2m VISA undulator from SDL @ 
BNL (courtesy E. Johnson) 

•  λu=1.8 cm, 110 periods, K=1.26 



NLCTA Studies of Echo at h=60th harmonic 

•  2400 nm to 40nm  
•  190 MeV 
•  Signal at 3rd harmonic of VISA 
undulator 

Spectrum at MCP 
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∆E1 ∆E2  R56
(1) R56

(2) 
38 keV 84 keV 12.5 mm 600um Spontaneous subtracted 

 

Simulation parameters 
 



Echo at 75th harmonic 

•  2400 nm to 32nm  
•  Signal at 4th harmonic of VISA 
undulator 
•  Results in agreement with 
theoretical expectations 
 

∆E1 ∆E2  R56
(1) R56

(2) 
60 keV 100 keV 12.5 mm 484 um 
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Echo 75 Spectral stability 

•  Higher sensitivity to stability than Echo 60 



Beam transport in VISA-II Undulator 
 

Halbach-type Pure-Permanent Magnet Undulator with 
Distributed Strong Focusing 

FODO Cell (green blocks)= 24.75 cm 	

= 13.75  undulator periods*	


(* 4 FODO Cells = 55 Undulator periods)	


Undulator Period = 18 mm (blue blocks) 	


Total Length = 110 Periods = 8 FODO cells, built in two 99 cm long sections + terminations 	


Slide courtesy G. Rakowsky 
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Reduction of bunching due to transport 

Smearing of micro-bunches when they propagate in a FODO lattice 

   Particles with larger betatron amplitudes have longer path lengths  
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Not true in our case. Longitudinal smearing is comparable to short 
wavelengths -> bunching is suppressed 
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Tuning harmonics with dispersion 

•  Each harmonic has a slightly different dependence on dispersion 
•  Individual harmonics can be enhanced or suppressed within the 
harmonic envelope  

Example: harmonic bunching of two 800 nm seed lasers 

18th harmonic 19th harmonic 20th harmonic 

Excited Excited Suppressed 
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Precision control of single harmonics with dispersion 
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Simulation parameters 
 

•  Bypassed OPA for better stability 
•  Echo harmonics with two 800 nm lasers 
near 40 nm 
•  Scan second R56 to tune harmonics 
•  nm-scale control of spectrum observed 

Experiment Simulation 



Moving to x-rays: EEHG vs Self Seeding @ LCLS 
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Images courtesy of G. Penn, G. 
Marcus, and D. Ratner.  

Simulation comparison with SRXSS results 
Echo seems more robust to MBI 
•  Spectral pedestal suppressed, narrower 

bandwidth 
•  Cascaded HGHG performs worst 
•  More dedicated simulation work needed 

SXRSS 

ECHO 

EEHG looks like a promising method to obtain a 
cleaner pulse with higher spectral brightness, 

but needs more benchmarking with experiments 
and theory. 



Summary 

•  Echo 60 and 75 observed. Results in good agreement with theory 
•  EEHG now in same harmonic regime as cascaded HGHG -> soft x-

rays from UV lasers 
•  Individual harmonics tuned with dispersion. Sub-wavelength control 

over harmonic envelope 
•  EEHG seeding offers distinct opportunities to address science 

cases for tunability/stability in SXRs, particularly for high rep rate 
where self-seeding may be damage-limited 

•  SLAC exploring EEHG options for LCLS-II 
•  Collaborations with FERMI ramping up for various possible EEHG 

experiments at soft x-rays 

•  Thanks to NLCTA team 
•  And Thank you for your attention! 
 


