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Motivation & Main Goals

« Use plasma accelerators to obtain 10’s to 100’s of GeV/m acceleration fields, allowing for
ultracompact accelerators

» Generate electron bunches with ultralow emittance (10-° mrad scale), kA currents, brightness
values orders of magnitude beyond state of the art -- 102° Am=2 rad-?!

« Combine robustness and controllability with flexibility and tuneability
« Allow designer bunch production
* Reduce chirp and (slice) energy spread to < 0.1%

* Use electron beams from a) linacs and b) from LWFA to drive the PWFA stage

Intense Photon Science

« Build ultracompact, high performance  Electron Sources
light sources and enable LINAC

other applications e.g. for HEP Advanced ;20 5 ‘
PWFA Stage Qp« @ e.g. boost FEL gain,
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» Do research with these facilities!
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Hidding et al., J. Phys. B 47,

LWFA vs PWFA summarized special x-ray issue 2014
e Electron bunches: drive plasma wave efficiently due to unidirectional fields

e Lasers not straightforward to drive longitudinal plasma waves due to oscillating EM-field structure

e Lasers can easily ionize matter, because of diffraction can do so in very confined area

e Electron bunches can be produced with very high rep rate from state-of-the-art sources

e Electron bunches are not good for ionizing matter

e Electron bunches move with c, allow for dephasing-free accelerator systems

e No dark current in PWFA systems because of high gamma

e Electron bunches are stiff: don’t expand much transversally (limited diffraction) — long acc. distances
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ionization @~10%* W/cm? (easy) ionization if E, > 5 GV/m (hard)
bubble @~1018 W/cm? (hard) blowout if n, > n, (easy)

= Electron bunches are ideal plasma drivers, laser pulses great for injection!



Take the best of both worlds: Hybrid Plasma Acceleration
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PRL 108, 035001 (2012) PHYSICAL REVIEW LETTERS 20 JANUART So12

Ultracold Electron Bunch Generation via Plasma Photocathode Emission and
Acceleration in a Beam-Driven Plasma Blowout

B. Hidding,"? G. Pretzler,” J. B. Rosenzweig,! T. Konigstein,” D. Schiller,! and D. L. Bruhwiler’

5 . Depunme nt of Physics and Astronomy, Univ e:sm of California Los Angeles, Los Angeles, California 90095, USA
What S needed . 2Institut fiir Laser- und PIasmaph\sr inrich-Heine-Universitdt Diisseldorf, 40225 Diisseldorf, Germany

e LIT/HIT medium such as H2/He e e 200 )
e electron bunch driver to set up (preionized) LIT blowout
e synchronized, low-intensity laser pulse to release HIT electrons within blowout




Timeline

...preliminary research & idea 2008-2011 (see e.g. PRL 2010 “Hybrid laser plasma accelerator”
« 2011: patent DE , 2012 patent US/PCT

« Jan 2011: submitted PRL “Ultracold electron bunch generation”, submitted abstract to LPAW 2011
China

» October 2011 proposed SLAC FACET experiment, approved as “E210 Trojan Horse PWFA”

« 2012 PRL “Ultracold electron bunch generation..”
accepted for publication, 108, 035001

» Further theory research such as Xi et al., PRSTAB 2013, Li et al., PRL 2013; Bourgeois et al., PRL
2013, Yu et al., ArXiV 2013., G. Wittig et al, PRSTAB 2015, G.G. Manahan, PRSTAB 2016..

« Ramp up E210 at FACET: 2012-2016 (leap day)



E210 Trojan Horse at FACET
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Proposal submitted 2011

Dramatic performance increase at FACET in last years: P

Started w/ self-ionized LIT alkali vapours, no laser \ > 4 ~Experimental Area
Electron bunch quality boosted in 2012 i / /&
10-20 TW synchronized Ti:Sa installed in 2013

First laser-preionized argon/hydrogen in 2014/15

Preionized H + He as HIT gas in 2015 (spring run) c’ompres'sorchican‘g'fgi

Synch. & time-of-arrival commissioning 2015 (spring run)
Focused Trojan laser commissioning 2015
Full blown exp. with 4 laser arms in 2016 spring run
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Pre-2012 setup: alkali metal oven, rely on FACET driver bunch self-ionization
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E210 setup: RadiaBeam “Picnic basket” chamber and 20 TW preionization laser
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setup at FACET

overview of optics setup at FACET

I main laser pulse for plasma pre-ionization
probe pulse for EOS and TH injection
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E210 setup: cube 3 vertical plasma filament diagnostics
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E210 setup: 2" laser arm. Independently tunable air compressor and upstream EOS
time-of-arrival diagnostics commissioning

A

probe near /far (, probe te!{g\scope
g > {4 (———
air compressor ——
S A
_\ probe attenuator \
to E224
- .
o 2x polarizer
PB delay
) -
|\ e—\
i
E"i bns| | i PC3 PC4 — — G -

-

_III_\
'—:

— BE window
USEOS delfy \ \

I

k Main compressor ——

USEQS
4
IPOTR 3

rail far
cube3_vert filament diagnostic
(looking from below)




E210 setup: 2" laser arm. Independently tunable air compressor and upstream EOS

time-of-arrival diagnostics commissioning
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E210 setup: 3'9 and 4t laser arm to E224 probing, downstream Trojan Horse (w/
independent delay line) and downstream EOS
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beam self-ionized experiments

setu p at FACET laser pre-ionized experiments

Trojan Horse experiment
plasma imaging experiments

upstream EOS
1 or 10 % sampler
downstream EOS and
90-deg TH injection
electron propagation direction
. —
D Profile Monitor EXPT:LI120:3305 29-May-2015 01:09:14 |
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overview of optics setup at FACET

I main laser pulse for plasma pre-ionization
probe pulse for EOS and TH injection
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E210 setup: implement vacuum chamber off-axis parabola focusing and Trojan Horse

filament diagnostics at 4™ laser arm
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E210 setup final: w/ downstream EQS (E224 probe not shown for simplicity)
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Spatiotemporal alignment between e-beam driver, upstream EQOS, H2
preionization laser & plasma channel, He Trojan Horse laser crucial

Example for jump in y-position of incoming e-beam vector (on BPM 3156) which killed the
laser-triggered injection




Alignment between e-beam driver and preionization laser

Calculated plasma profile =
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Alignment between e-beam driver and preionization laser

Preionization laser has to be exactly aligned with electron beam axis.

Laser
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Alignment between e-beam driver and preionization laser

Preionization laser (or e-beam) slightly off:
Already if blowout touches walls at some point, the blowout collapses!

One wants to have a large plasma wavelength e.g. due to timing issues

This is a real bottleneck!
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Normal procedure: evacuate plasma chamber, realign laser beam (at low intensity) to
electron beam axis (takes 1-2 hours w/safety procedures).. Then re-fill chamber with
gas and hope alignment stands for a while
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Advanced procedure in 2016: Make use of downstream BPMs and plasma
response to find alignment (i.e. avoid “ultrafast plasma kicker”)

o-beam Pointing after |P Area

e-beam Pointing alter IP Area

y angle in mrad

y angle in mrad

x anglein mrad

X angle°|n mrad

New diagnostic tool made life considerably easier, even allowed data taking after
sunrise (thermal drift) because realignment could be done online.



Alignment and timing of e-beam driver & preionization laser with 90° Trojan
injection laser:
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3D PIC-simulation w /' Vsim (high laser intensity case)
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3D PIC-simulation w / Vsim (low laser intensity)
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Experimental: Laser-triggered injection very robust: charge
injected each shot



Correlated Trapped charge on Spectrometer & DS BMP
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After solving alignment and timing issues, data taking was boosted (best results were obtained
on leap day Feb 28th!) and laser-triggered injection works surprisingly stable

More details see talk Aihua Deng, Wednesday 1200
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When looking back, disruptive emittance and brightness improvements have been prerequisites for
next-gen. light sources...
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When looking back, disruptive emittance and brightness improvements have been prerequisites for
next-gen. light sources...

Energy spread can be a killer e.g. for FEL -- can we move the Trojan further to
the left in the plot, i.e. can we reduce energy spread?



TH energy chirp
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Yes we can: TH energy chirp reduction
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Full 3D start-to-end simulations

TH-PWFA plasma stage

TH laser pulse(s) FEL simulations:
—~—— : / * desXie
* Genesis
o Puffin

—________——____;-
- -

handshake between PIC
(HDF5) and transport code

handshake transport
code to FEL tools

\Sim

PIC simulation using Gaussian
drive beam shapes or
macroparticle input from full
beam optics simulations such
as ELEGANT etc.

~

-

catch beam from plas}ﬁa
modeled with Elegant

model optically en‘gineered
downramp for emittance
preservation, include into PIC

(Elegant)



Ultrahigh — now 6D — brightness transformative to hard x-ray FEL?

TH-PWFA plasma stage
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Export the Trojan Horse?
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Use LWFA-produced electron bunches as drivers for PWFA-TH stages

________________

7,WTH laser pulse(s)

]
L -~

high-brightness
witness bunch

LWFA driver o

witness matched
/ to undulator

LWFA-generated

e-bunch drives PWFA stage

shadowgraphy w/ probe

shows plasma formation

in H2 jet, but not in He jet: microscope
objégtive

' 1stgas stage: T for probe~

LWFA gas cell

remaining LWFA las
preionizes H2 gas je
(but not He) ‘

tunable distance ~7 fs, 0.2 mJ probe ‘
_between gas stages (suitable also for injection)




Summary

Shown proof-of-concept of hybrid laser-spiked PWFA and laser-triggered injection /
plasma torch / Trojan Horse in +5-ear program at FACET

While not measured (how measure ultrashort bunch emittance at 1-e9 mrad level?)
and optimized to the limits, the confidence level is now widespread that this “solves”
the emittance problem of plasma accelerators

Orders of magnitude higher 5D brightness than state-of-the-art

New technique (patent pending) seems to “solve” the energy chirp/spread problem
e.g. to ~0.03% level. No details can be revealed here but as regards complexity: if

you can realize TH, what is additionally needed to dechirp is surely feasible

Preionized plasma channel generation is a real “bottleneck” — key R&D area. E.qg.
use longer wavelength (CO2) lasers!

Use LWFA to produce drive bunches for TH-PWFA to allow for truly compact setups

Realize (LWFA-)TH-PWFA based light sources and other applications



