
Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

Clustering algo for the NA62 GTK
GAP Meeting - Ferrara

M.Corvo

INFN and University of Ferrara

March 23rd 2016

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 1 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

1 Introduction

2 GigaTracker Reconstruction algorithms
Clustering
K-means

3 Implementation
Implementation on GPU

4 Results
Performances
Drawback

5 Conclusions
Improvements

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 2 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

Motivations and objectives

Motivations

Speed up the algorithms for the reconstruction of tracks in the GigaTracker

Means

Exploit the execution of algorithms in hardware accelerators (GPGPUs,
Intel Phi, multi core CPUs)

Goals

Prove that we can gain a (possibly) significant speedup in algo execution

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 3 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

The detector

The GigaTracker detector is made of three silicon pixel stations and its
aim is to measure time, direction, and momentum of all the beam tracks
(∼ 109sec−1)

GigaTracker

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 4 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

The detector II

Particular of one station

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 5 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

Clustering

Generally speaking we define clustering as a mechanism by which we
group points in a data set in a way such that points within each
cluster are similar to each other

In detectors that record spatial points, the similarity can be defined
via a (Euclidean) distance measure

Currently the reconstruction code of the GTK starts by creating clusters in
each station by means of two nested for loops, which implies a (worst
case) computational complexity of n2, where n is the number of hits in a
given event.

Idea

Delegate n threads to perform the calculation for each hit.

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 6 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

Clustering Algo

Consider this image

Spatial points

To aggregate the spatial points we can exploit an
algorithm called k-means The idea behind this
algorithm is:

1 provide an initial number of possible clusters

2 assign the coordinates of the centroid to each
of the initial cluster

3 calculate the distance between each spatial
point and the cluster centroids

4 assign to each cluster those spatial points
whose distance from the centroid is less than a
given threshold

5 recalculate the centroid taking into account the
contributions from all the points that now
belong to the cluster

6 goto 3 unless there are no more changes either
in the membership of hits or in the cumulative
difference in distance

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 7 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

K-means algo adaptation

The k-means is an iterative algorithm which needs the (supposed)
number of clusters around which all the spatial points will ’aggregate’

This is clearly a limitation, as we cannot forsee how many clusters
we’ll have

This is why, in my implementation, every hit in each GTK station is
considered a potential cluster

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 8 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

Changes in the code and GPU implementation

Some changes were needed to implement the GPU version of k-means:

For best cache performance, two arrays for x and y coordinates were
added in class TRecoVEvent

Some methods of the class had to be modified accordingly
Plan is to find a ’cleverer’ way to manipulate CUDA data structures
avoiding adding new methods by menas of inheritance

One new simpler class Cluster containing the cluster centroids, hits
and hits id

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 9 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

Setup

Tests have been performed on a GTX Titan with

1 14 MP

2 875 MHz

3 6 GB ram memory

4 1024 maximum thread per block

mounted on a Intel R©CPU

1 4 cores (8 with HyperThreading)

2 1.6 GHz

3 32 GB ram memory

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 10 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

Performance

Hits Memory setup
(GPU in ms)

Clusterization time
(CPU in ms)

Clusterization time
(GPU in ms)

233 6.52 10. 1.69
388 0.11 27. 1.47
548 0.14 52. 1.47
705 0.12 85. 1.46
873 0.42 127. 1.38

Spatial pointsM.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 11 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

Results

The speedup is evident by the execution time of the two algorithms

This is only one part of the story though

The algorithm doesn’t make any distinctions between clusters which
are ’clones’ of each other

Clones must be killed

Clone killing is performed using the Thrust libraries

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 12 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

Clone killing

Thrust is a CUDA library similar to the C++ standard one

It consists of both containers (like std :: vector, std :: tuple, . . . ) and
algorithms (like std :: sort , std :: find, . . . )

The easiest way to detect and delete clones is to std :: sort the list of
clusters and then std :: unique them

The drawback of this further computation is a degradation of
performances

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 13 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

Performance with clone killing procedure

Hits Memory setup
(GPU in ms)

Clusterization
time (CPU in
ms)

Clusterization
time (GPU in
ms)

Clone killing
time (ms)

233 6.52 10. 1.69 4.25
388 0.11 27. 1.47 4.42
548 0.14 52. 1.47 5.39
705 0.12 85. 1.46 6.08
873 0.42 127. 1.38 7.45

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 14 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

Improvements

Room for improvements is pretty wide. On GPU side:

Use of constant memory for hits

Use of streams to hide memory latency

On code side

Port of track fitting to complete the tracking sequence

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 15 / 16



Outline Introduction GigaTracker Reconstruction algorithms Implementation Results Conclusions

Conclusions

Use of GPU to speedup serial code is well know

Though common approach is ’brute force’ fashion

This means ’Give me as many threads as you can and perform a task in
each thread’

This can be affordable, but has some drawbacks, as seen with clone
killing procedure which must be fired after clusterization

Speedup is always wellcome, but beware of Amdahl’s law

1

(1 − F ) + F
N

(1)

M.Corvo (INFN and University of Ferrara) Clustering algo for the NA62 GTK March 23rd 2016 16 / 16


	Introduction
	GigaTracker Reconstruction algorithms
	Clustering
	K-means

	Implementation
	Implementation on GPU

	Results
	Performances
	Drawback

	Conclusions
	Improvements


