

Status report su algoritmi per CT

Giovanni Di Domenico

Università degli Studi di Ferrara & INFN Sezione di Ferrara

23 March 2016 - Ferrara

Outline

- Cone-beam CT systems
- Feldkamp Davis Kress (FDK) algorithm
- GPU implementations
- Optimization steps
- Iterative Reconstruction
- DBT and OpenRTK

Cone-beam CT system

Tipically, a CBCT system tipically has:

- X-ray tube (30kVp 120 kVp),
- flat panel detector (2048 x 2048),
- rotating gantry (200-1000 angular

step),

reconstructed volume size ~ 512³

Cone-beam CT applications

- Non-destructive testing
- Dental imaging
- Microtomography
- Image-Guided Interventions

Circular Cone-beam Projection Geometry

In cone-beam CT, the detector acquires the line integral of attenuation coefficient $\mu(x,y,z)$ as function of rotation angle β :

$$g(u, v, \beta) = \int \mu(\vec{r}_o(\beta) + \alpha\hat{\theta}) d\alpha$$

where:

- $\vec{r}_o(\beta)$ is the source position as function of rotation angle,
- $\hat{ heta}$ is an x-ray line beam

FDK algorithm - 1

• The Feldkamp-Davis-Kress algorithm is used to obtain an approximate solution of 3D tomographic problem.

$$\hat{\mu}(x, y, z) = \frac{1}{2} \int_{0}^{2\pi} d\beta \frac{1}{U^2} \int_{-u_m}^{u_m} du \frac{D}{\sqrt{D^2 + u^2 + v^2}} \cdot g(u, v, \beta) \cdot h(u - u')$$

where

•
$$\frac{D}{\sqrt{D^2 + u^2 + v^2}}$$
 is the cosine weighting function,

•
$$U = \frac{R_s - x \sin \beta + y \cos \beta}{R_s}$$
 is the backprojection weighting factor

FDK algorithm - 2

The FDK has three steps:

$$\hat{\mu}(x, y, z) = \frac{1}{2} \int_{0}^{2\pi} d\beta \frac{1}{U^2} \int_{-u_m}^{u_m} \frac{D}{\sqrt{D^2 + u^2 + v^2}} \cdot g(u, v, \beta) \cdot h(u' - u)$$

$$1 - \text{normalization step}$$

$$2 \quad \text{convolution step with nome filter } h(u)$$

- 2 convolution step with ramp filter h(u)
- 3 backprojection step

The reconstructed volume size is tipically 128³, 256³, 512³, 1024³.

Data distribution and parallelization -1

- A 512³ voxel volume requires at least 512 MB of memory space, it is no easy to store the entire volume and the projections on GPU device memory.
- We have decided to store the entire volume (or a 512³ portion if the size > 512³) in device memory and to load the projections into device memory when needed and remove it after its backprojection.

G. Di Domenico Status report su algoritmi per CT - GAP 2016 Ferrara

Data distribution and parallelization -2

In the first implementation (naive code) we transfer the first projection P_1 to the device global memory and perform:

- 1. weighting step by using 1 Cuda thread per pixel,
- 2. 1-D filtering step by using CUDA FFT library applied to each projection with stride Nv,
- 3. backprojection step by using 1 Cuda thread for K voxels along zdirection.
- The 3 steps are repeated for the remaining projections.

Two datasets are used for testing the naive inplementation in CUDA:

- Dataset 1 consists of 200 projections acquired on 360° circular scan trajectory. The size of each projection is 1024x512.
- **Dataset 2** consists of 642 projections acquired on 360° circular scan trajectory. The size of each projection is 256x192.
- The GPU devices used are a GTX-680 and a GTX-Titan .

GPU	GTX-680	GTX-Titan
Architecture	Kepler GK104	Kepler GK110
Performance [GFlops]	3090.4	4500
Texture fillrate [GT/s]	128.8	187.5
Bandwidth [GB/s]	192.2	288.4

G. Di Domenico Status report su algoritmi per CT - GAP 2016 Ferrara

Results: naive code vs OMP code

GTX680	Step0 [s]	Step1_2 [s]	Step3 [s]	Total [s]
dataset1	0.4	6.99	12.41	19.8
dataset2	0.18	2.21	4.37	6.76
Titan	Step0[s]	<u>Step1_2</u> [s]	Step3 [s]	Total [s]
dataset1	0.57	5.69	8.05	14.31
dataset2	0.45	<u>1.81</u>	3.1	5.36
OpenMP	Step0 [s]	Step1_2 [s]	Step3 [s]	Total [s]
dataset1	0.67	5.09	206.95	212.71
dataset2	0.21	1.26	80.96	82.43

- step 0: normalization
- •step 1: cosine weighting
- step 2: filtering
- step 3: backprojection

Optimizing backprojection step

- 1. Memory coalescing
 - Organize the threads inside a block to access contiguous memory location: the volume is LxLxL is processed by a grid (L/Bx)x(L/By)x(L/K),
- 2. Global memory access reduction
 - Use a kind of memory that has a cache mechanism (texture and constant memory)
 - Increase the number of projections processed by a single kernel to reduce the number of access to volume global memory,

Cuda FDK results

Backproiection step comparison

GTX680	V0 [s]	V1 [s]	V2 [s]	OMP[s]
dataset1	12.41	3.75	2.27	296.6
Titan	V0 [s]	V1 [s]	V2 [s]	OMP [s]
dataset1	8.05	2.24	1.42	206.95

All steps comparison

GTX680	V0 [s]	V1 [s]	V2 [s]	OMP[s]
dataset1	19.8	11.15	9.66	302.3
Titan	V0 [s]	V1 [s]	V2 [s]	OMP [s]
dataset1	14.31	8.49	7.68	212.7

Dataset_1 reconstructed images

 $(\Delta I)/(I)=4.0 \times 10^{-3}$

ΔI_{max} /Ipix=4.0 x 10⁻²

G. Di Domenico Status report su algoritmi per CT - GAP 2016 Ferrara

CT Iterative Reconstruction

- Accurate physics models:
 - We can use information like X-ray spectrum, beam-hardening, scatter,...
 - We can model the detector PSF, the focal spot size,...
- It is possible to reconstruct data from nonstandard geometries.
- We can use the right model of measurement statistics.

Why?

FBP - fast

ASIR – a bit longer

Statistical - longer

Iterative methods

- Algebraic reconstruction methods:
 - Given a sinogram data y and a system model A, we want reconstruct the object x solving y = Ax,
 - ART, SIRT, SART,...
 - iterative FBP:

 $x^{(k+1)} = x^{(k)} + \beta \cdot FBP[y - Ax^{(k)}]$

- Statistical reconstruction methods:
 - EM-ML, MAP, OSEM, CG,...

$$- \hat{x} = argmin \frac{1}{2} \|y - Ax\|_{2}^{2} + \beta \cdot \|Cx\|_{1} \text{ (TV)}$$

$$- \hat{x} = argmin \frac{1}{2} \|y - Ax\|_2^2 + \mu \cdot \|z - Cx\|_2^2$$
 (CG)

System Matrix Evaluation

- The calculation of A (system matrix) in CT is not possible: ex. Volume size 512³, Sinogram Size 1024^{2*512}, rows~10⁸, colums=5x10⁸
- The calculation of A must be done «on the fly», we need fast projection (A) e fast backprojection (A⁺) operators.

- Ray Tracing Method: Siddon (1985)
- Distance Driven Method: De Man (2004)
- Separable Footprint Method: Long (2010)

Ray Tracing Method-projection

Ray Tracing Method-backprojection

GPU Implementation

- We have implemented a version 0.1 of RT projectorbackprojector on GPU (CUDA).
- The preliminary results shown a gain of factor 70x in execution time for GPU code respect to CPU.

GTX680	GPU Prj [s]	GPU Bck-prj[s]	CPU Prj [s]	CPU Bck-prj [s]
phantom	6.7	40.3	414.5	2850.6

The next step is to optimize the CUDA implementation for RT and to start the implementation of Distance Driven Method.

Digital Breast Tomosynthesis

- Angular Range +- 25°
- Angular Step
- Acquisition time 30 s

2°

- Detector Size 3584 x 2816
- Detector pitch 0.085 mm
- Voxel size 0.085x0.085x1 mm

Synthetized 2D Image in DBT

- The aim is to obtain from the DBT reconstructed volume a synthetic 2D image comparable to the conventional 2D mammography.
- An optimized projector has been implemented both on GPU and on CPU.

CPU

G. Di Domenico Status report su algoritmi per CT - GAP 2016 Ferrara

OpenRTK

- The reconstruction toolkit (RTK) is an open-source crossplatform software for fast circular cone-beam CT reconstruction based on the Insight Toolkit (ITK).
- RTK provides o will provide:
 - Basic operators for reconstruction, e.g., filtering, forward, projection and backprojection
 - Multithreaded CPU and GPU versions
 - Tools for respiratory motion correction
 - I/O for several scanners
 - Preprocessing of raw data for scatter correction
- We have started a project to implement our reconstruction algorithm in this platform.