

Pure CsI Test Beam Update

A. Rossi, C. Cecchi, E. Manoni

Istituto Nazionale di Fisica Nucleare Data acquisition configurations

- We acquired 5 different energies for each run
 - Trigger : 5 different tagger in OR

INFN

- The 5 tagger signals used in the trigger are acquired for offline separation of the energies
- Three different trigger configuration:
 - Calibration: 289MeV 350MeV 422MeV 480MeV 550MeV
 - One run at the center of each crystal
 - Low Energy: 50MeV 76MeV 99MeV 151MeV 201MeV
 - 1 run at the center of two internal crystals (red dots)
 - 4 runs at each points which maximize the containment according to MC (pink dots)
 - High Energy: 301MeV 400MeV 501MeV 651MeV 780MeV
 - 1 run at the center of two internal crystals (red dots)
 - 4 runs at each points which maximize the containment according to MC (pink dots)

Belle T

- Pedestal : first 100 samples mean
- Signal : Mean between fixed windows (20samples)
- Amplitude : Signal Pedestal

- Signal : Gaussian fit on fixed windows (20samples)
- No pedestal subtraction
 - With software shaping baseline always at zero

- Alcuni hanno uno aumento di temperatura netto alla fine dei run di calibrazione (max dT=1°C)
 - o Canali 3,6,7, 10, 11, 15
 - o Il canale 8 ha una diminuizione di T

T correction

T dependency - Xtal6 Apd0

T dependecy at Mainz HV extracted with linear interpolation

Corrultunction Exponent APD0 Corr. Factor APD1 Corr. Factor APD0 Mainż Correction ł APD0 Mainz Correction -0.05 -0.06 0 -0.07 -0.08 -2 -1 0 2 3 4 5 $\Delta HV (V)$

Channel6 Correction parameter

A. Rossi - Bellell ECL metting

Calibration

- Fit the deposited energy distribution for each APD for each energy with Novosibirsk function
 - Only the deposited energy on the crystal in which the beam is directed
- Using the Mean value to intercalibrate the 32Chs
- We have 5 different constants (one for each energy) for each channel
 - Final constants as the mean value

Calibration Constants - APD0

Calibration Constants - APD1

A. Rossi - Bellell ECL metting

INFN

Istituto Nazionale

di Fisica Nucleare

Check calibration

INFN

Istituto Nazionale

di Fisica Nucleare

 Comparison at 75MeV and 780MeV between Ch6 and Ch9 (APD0)

- Non linearity observed
- Difference between the two different run (high/ low energy)
- Source still unknow
- Correction applied to linearize the response
 - Shift on high energy points → worsening the resolution (conservative approach)

Channel 6 - Calib. Ch6 Apd0

Same strategy also for shaped data

- Sum all the channels with Signal greater than 0 together
 Intercalibration parameters applied
- Stable temperature during all the test period
 - No T correction needed

Ch6 - Position Cen - LowEnergy Trigger

Ch6 - Position Cen - HighEnergy Trigger

Crystal Center

 $\frac{b}{E} \oplus c$ Fit function : $\sigma(E)/E = \frac{a}{\sqrt{E}} \oplus$

20 Resolution (%) χ² / ndf Prob 7.861/7 0.345 Run on Ch6 (Cen) - CSP 3.259 ± 0.1477 18 а 0.2007 ± 0.171 b Run on Ch9 (Cen) - CSP 3.08 ± 0.2936 16 χ^2 / ndf Run on Ch6 (Cen) - SHP Prob 0.1387 3.001 ± 0.143 Run on Ch9 (Cen) - SHP 0.2167 ± 0.1393 14 3.251 ± 0.2542 χ^2 / ndf 4.281/7 Prob 0.7468 12 a 3.139 ± 0.05614 0.0001833 ± 70.05 h 3.065 ± 0.1723 10 0.08711 Prob 2.809 ± 0.05385 6.83e-05 ± 78.05 8 3.482 ± 0.1423 6 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Energy (GeV)

Resolution - Calib. Ch6 Apd0

Resolution after shaping not updated

Photostatistics

Ch6 - Position Cen - Calib Ch6 - HighEnergy Trigger

- a/sqrt(E) evaluated with total deposited energy in the matrix
 - To be updated with the deposited energy on the single channel??

- CoG vs Energy
- CoG vs Time
- Update Shaped data analysis

Signal Shape

Slow component cutted (almost) by FGUV11S filter

 Fast component: FGUV11~78% - FGUV5~89% -FGUV25~88.5%

A. Rossi - Bellell ECL metting

Backup

• A. Rossi - Bellell ECL metting

Shaped Signal Analysis

Same analysis applied also to shaped (100ns) signals

Ch6 - Position Cen - Shp 100ns - HighEnergy Trigger

A. Rossi - Bellell ECL metting

Cluster Size

A. Rossi - Bellell ECL metting

- E1/Etot ratio lower at lower energies
 - Is it as expected?
 - Higher contribution from low energy photons?

Cluster Size (SHP) Ch6 - Position Cen - E₁/E_{total}

Ch6 - Position Cen - Cluster Size

INFN

Istituto Nazionale

di Fisica Nucleare

A. Rossi - Bellell ECL metting

- Cluster Size slightly bigger wrt CSP
 - o ~0.3 crystals
- E1/Etot has same behavior as before shaping