3D Pixel Detectors for AFP and HL-LHC

Emanuele Cavallaro, Fabian Förster, Marc Granado, Sebastian Grinstein, Jörn Lange, Iván López Paz, Maria Manna, Lluis Simon, Stefano Terzo, David Vázquez Furelos

IFAE Barcelona

Giulio Pellegrini, David Quirion

CNM-IMB-CSIC Barcelona

28th RD50 Workshop, Torino, 6-8 June 2016

Institut de Física d'Altes Energies

BIST Barcelona Institute of Science and Technology

3D Detector Principle

Radiation-hard and active/slim-edge technology

Advantages

- Electrode distance decoupled from sensitive detector thickness
 - \rightarrow lower V_{depletion}
 - \rightarrow less power dissipation, cooling
 - \rightarrow smaller drift distance
 - \rightarrow faster charge collection
 - \rightarrow less trapping
- Active or slim edges are natural feature of 3D technology

Challenges

- Complex production process
 → long production time
 - \rightarrow lower yields
 - \rightarrow higher costs
- Higher capacitance
 → higher noise
- Non-uniform response from 3D columns and low-field regions → small efficiency loss at 0°

Applications of 3D Pixel Detectors

ATLAS IBL

- 25% 3D FEI4 detectors
- Installed during LS1 2014/15 and running since June 2015
- ATLAS Forward Proton (AFP)
 - Successful 3D FEI4 module production Dec 2015- Feb 2016
 - Installed in Feb 2016 and running in LHC since March 2016

CMS-TOTEM PPS

Sensors produced, installation planned this year

HL-LHC pixel detectors

- Possible installation 2024, sensor qualification for Pixel TDRs 2017
- Radiation hardness studies with IBL/AFP 3D FEI4 generation on-going
- First dedicated 3D sensors with small pixel size and interelectrode distance produced and characterised

AFP Tracker

94.000mm

- ATLAS Forward Proton Detector
 - Tag and measure forward protons
 - Tracker + Time of Flight in Roman Pots
 - One arm (0+2 stations) installed in YETS 2015/16
 - Second arm (2+2) planned for EYETS 2016/17
- Tracker Station
 - 4 planes of 3D CNM FE-I4 Si pixel sensors (ATLAS-IBL proven)
 - 14° tilt in x for efficiency and resolution improvement

Requirements

- Slim edge 100-200 µm
 - Achieved 15-150 µm in tests
- Radiation hard after non-uniform irradiation
 - Demonstrated up to peak of 4e15 n_{ed}/cm²
- 10 (30) µm resolution in x (y)
 - Achieved 3 µm/station in x

39.776mm 18.000n 200 µm

6061

PEEK

Presentations at various RD50 Workshops

S. Grinstein et al., NIM A730 (2013) 28 J. Lange et al., JINST 10 (2015) C03031

3D FEI4 Pixels

AFP Sensor Production

- 1st CNM AFP production run 6682 (July 2014)
 - 5 wafers with 40 sensors successfully finished, 8 wafers lost
 - Slim-edged to 180 µm
 - 9 good-quality sensors → low yield
- → This is all we had for the first AFP pixel module production and installation in 2015/2016

Production	Wafer	Good	Sensor	Good	
Run	Yield	Wafers	Yield	Sensors	
AFP 1 (6682)	38%	5	23%	9	

Good sensor: $V_{BD} > 20 \text{ V}$ Sensor yield based on good wafers

AFP Sensor Production

Good sensor: $V_{BD} > 20 V$ Sensor yield based on good wafers

 \rightarrow

AFP Sensor Production

30 1st CNM AFP production run 6682 (July 2014) Number of sensors AFP production 1 Mean V_{bd}: 12 V 25 5 wafers with 40 sensors successfully finished, AFP production 2 8 wafers lost Mean V_{bd}: 89 V 20 GOOD M. Manna Slim-edged to 180 µm 15 9 good-quality sensors \rightarrow low yield 10 This is all we had for the first AFP pixel module production \rightarrow and installation in 2015/2016 5 0 Investigation and improvement of CNM process (2015) 100 120 20 60 80 140 160 40 **IBL/AFP1/7781** AFP2/CT-PPS V_{bd} [V] DRIE optimisation \rightarrow less 3D side wall defects 1. Wafer edge protection \rightarrow less broken wafers 2nd CNM AFP production run 7945 (March 2016) EHT = 5.00 W/ Signal A + SE2 Neg + 19 27 K.K 10 wafers with 80 sensors successfully finished, G. Pellegrini, D. Quirion 2 wafers lost Production Wafer Good Sensor Good Run Yield Wafers Yield Sensors 73 good-quality sensors 38% AFP 1 (6682) 5 23% 9 Sent to IZM for UBM 83% 10 94% AFP 2 (7945) 73 Huge yield and IV improvement \rightarrow promising for 2nd arm (and HL-LHC productions)

Good sensor: $V_{BD} > 20 V$ Sensor yield based on good wafers

AFP Pixel Module Production

I. Lopez Paz

Checking for disconnected bumps with X-ray

In-house solder flip-chipping of sensor to chip

- Hybrid is placed with pick-and-place and glued with Araldite 2011 1:1+Tesa onto NOVAPACK AI+CF carrier card
- Flex (produced by Oslo) also glued onto carrier card
- Chip is wire-bonded to flex (checked with pull test)
- Quality assurance (QA) at IFAE and after shipping to CERN
 F. Förster,
 - Analog/digital, tuning, Sr90 source scan

J. Garcia, E. Peregrina, S. Grinstein, M. Chmeissani

Wire-bond machine

Wire-bonding at IFAE

0, 10, 20, 30, 40, 50, 60, 70, Column

AFP Tracker Installation and Running

- Tracker assembled and installed in 2 Roman Pots in Feb 2016
 - NEAR station: 3 modules with V_{op}=5-10 V (not more available at that time)
 - FAR station: 4 modules with $V_{op}=0-30$ V (one with HV short, but 3D even at 0 V quite efficient)
- Running from the start-up of LHC in March 2016
 - Stand-alone and integrated with ATLAS, up to 600 bunches
 - Good-quality LHC data
- Preparing for second production phase for AFP 2+2 completion in EYETS 2016/17 (16 modules)
 - Expect further improvement in module quality due to better sensors and experience gained

Diffractive p

Development of HL-LHC 3D Pixel Detectors

Development of HL-LHC 3D Pixel Detectors

- Properties of today's IBL/AFP generation of 3D pixel detectors
 - 230 µm thick sensors by CNM and FBK
 - FEI4s: 50x250 μm 2E, 67 μm inter-el. distance
 - Radiation hardness up to 5e15 n_{eq}/cm² established (IBL)
 - \rightarrow Exploring limits with irradiations up to 2e16 n_{eq}/cm²

Development of HL-LHC 3D Pixel Detectors

- Properties of today's IBL/AFP generation of 3D pixel detectors
 - 230 µm thick sensors by CNM and FBK
 - FEI4s: 50x250 μm 2E, 67 μm inter-el. distance
 - Radiation hardness up to 5e15 n_{eq}/cm² established (IBL)
 - \rightarrow Exploring limits with irradiations up to 2e16 n_{eq}/cm²
- Development of new generation of HL-LHC 3D pixel detectors
 - Radiation hardness: 2e16 n_{eq}/cm² required
 - Reduced pixel size: 50x50 μm² or 25x100 μm²
 - Reduced 3D inter-electrode distance L
 - \rightarrow less trapping, V_{dep}
 - \rightarrow more radiation hard
 - (but higher C_{det} and more dead material)
 - Possibly reduced thickness (100-150 μm)
 - \rightarrow less leakage current, C_{det}, cluster size at high eta (but less Q at 0°, more complex production)
 - First prototype productions of new generation finished

\rightarrow Extensive characterisation and radiation hardness studies on-going

- Non-uniformly p-irradiated FEI4 (PS IRRAD) \rightarrow probe range of fluences on single device
- Phase 1: 12 mm FWHM beam up to peak of 9e15 n_{eq}/cm²
 - Extracted 2 devices for characterisation and beam tests in 2015
 - At 9.4e15 n_{ea}/cm²: 97.8% efficiency at 170 V! see I. Lopez (RD50 Workshop Dec. 2015)
- Phase 2: Further irradiation of remaining devices with 12 or 20 mm FWHM beam up to peak of 2.2e16 n_{ea}/cm²
 - Assembled and characterised at IFAE during last weeks
 - Devices alive, but some have chip issues (high LV current, column errors)
 - High I_{leak}, but 2 devices operable at 150-200 V
 - Beam test campaigns on-going

Rough preliminary estimate of peak (NOT mean) of non-uniform fluence

Standard 12x12

FWHM~12 mm

webpage

First Small-Pixel CNM Run - Overview

G. Pellegrini (more details in presentation at RD50 Workshop, Dec 2015)

- RD50 project (in collaboration with Santander)
- Run 7781 finished in Jan 2016
- 5 wafers, p-type, 230 µm double-sided, non-fullypassing-through columns (a la IBL)
- **First time small pixel size 25x100+ 50x50 µm²** (folded into FEI4 and FEI3 geometries)
 - Also strips and diodes down to 25x25 µm² 3D unit cell
- Increased aspect ratio 26:1 (column diameter 8 µm)

✓ Number of 3D electrodes/pixel

- A: 25x250 μm² 2E standard FE-I4
- B: 25x500 μm² 5E i.e. 5x "25x100" 1E, with 3DGR
- C: 50x50 µm² 1E with the rest connected to GND with 3DGR
- D: 25x100 µm² 2E with the rest connected to GND
- E: 50x50 μm² with the rest connected to GND without 3DGR
- F : FEI3 device: 50x50 µm² with rest to GND with 3D GR
- G: ROC4sens 50x50 µm²
- H: PSI46dig
- I: FERMILAB RD ROC 30x100 µm²
- L: Velopix 55x55 µm²
- M: Strip 50x50 µm²
- N: Strip 25x100 µm²
- O: Strip 30x100 µm²
- P: Pad diodes 25x25, 25x50, 30x50, 50x50 μm²

Small-Pixel Structures

C/E: 50x50 μm² 1E with the rest connected to GND

B: 25x500 μm² 5E (= 25x100 1E) full area sensitive!

Strips

50x50 µm² 3D unit cell 128 strips, 150 3D columns each

25x100 µm² 3D unit cell 128 strips, 75 3D columns each

Wafer and Device Status

5 wafers finished

- W7: broke 3 strips recovered, FEI4s broken
- W4: electro-less Au UBM at CNM on FEI4
- W8, W3, W5: electro-plate Cu UBM at CNM on FEI4
 - W8 finished
 - W3 and W5 broke during UBM -> try to recover devices
- Pixels
 - FEI4s flip-chipped, assembled and tested at IFAE (4 50x50, 1 25x100)
 - Many disconnected bumps, 2 sensors detached from chip (UBM at CNM not yet optimised)
 - Characterisation and beam tests performed, irradiation on-going
- Strips and Pad Diodes
 - n-irradiation at JSI (5e15+1e16), 2e16 in prep.
 - IV and TCT

FE-I4 Pixel Characterisations

Measurements by D. Vazquez

IVs

- Breakdown typically 10-40 V (produced before CNM process optimisation)
- Tuning to 2ke threshold and ToT of 10BXs@20ke successful
- Sr90 source scans
 - Devices work apart from disconnected bumps
 - Less charge collected than deposited due to special structure: only 20% fraction of 50x50 pixels connected to FE-I4 bump, rest on GND without recording signal -> charge loss due to charge sharing to non-readout pixels

Beam Tests and Irradiations

- 4 FEI4 devices measured in beam tests in May+June 2016 (4 C/E 50x50, 1 D 25x100)
 - Both in AIDA-type telescope and FEI4 telescope
 - Data reconstruction and analysis on-going
- 3 FEI4 Devices being irradiated at PS IRRAD
 - Same devices as in beam test (2 C 50x50, 1 D 25x100)
 - Target fluence: 1e16 n_{eq}/cm^2 over 20x20 mm² → peak of 1.4e16 n_{eq}/cm^2
 - Plan to measure in Summer/Fall beam tests
- Irradiation at JSI Ljubljana
 - Strips already irradiated to 5e15+1e16 n_{eq}/cm²
 - Up to 2e16 n_{eq}/cm² for strips, pads +FEI3 soon

TCT on Strip

Measurements by M. Granado, L. Simon

IV after Irradiation for Different 3D Geometries

- Higher I_{leak} and lower V_{BD} for smaller 3D cell sizes
- Still under investigation
 - Artifact of this run? (before CNM process optimis.)
 - Or real trend for smaller 3D cell sizes due to higher el. field and multiplication?
- Still much lower than RD53 limit of 10 nA/pixel
- In any case V_{op} will be lower for smaller 3D cell sizes

 \rightarrow compensating effect for power

Power after Irradiation for Different 3D Geometries

V_{op} will be lower for smaller 3D cell sizes

 \rightarrow compensating effect for power

For the same power dissipation as for FEI3 at 1e16 n_{eq}/cm² and 180 V (15 mW/cm²), the 50x50 structures need to be operated at 120 V

 \rightarrow to be studied in a test beam

Up-coming 3D Runs at CNM

G. Pellegrini, D. Quirion

- New run as copy of 7781 with improved process
 - Expect better yield and IVs (shown by AFP+CT-PPS runs)
 - Production started \rightarrow expected for end of year
 - Thin 3D runs (100-150 µm on SOI)
 - Same mask as recent 3D run 7781
 - Production started \rightarrow expected for end of year

Runs with RD53A pixel devices

- Single-sided 72, 100+150 μ m: masks ordered $\rightarrow \sim$ 1 year
- Double-sided 200 µm planned later
- Devices
 - 14 RD53A 50x50µm² 1E
 - 2 RD53A 25x100µm² 1E
 - 2 RD53A 25x100µm² 2E
 - 1 FEI4 50x50µm² 1E (equivalent to 7781 C)
 - Pad diodes of 50x50µm² and 25x100µm² (big and small)

Conclusions

- AFP 3D FEI4 modules assembled by IFAE, installed and taking LHC data
 - Preparing for second-phase production and installation in EYETS 2016/17 (16 modules)
 - Huge sensor yield improvement to 94% for second AFP sensor production at CNM
- Studied IBL-type 3D pixel detectors up to HL-LHC fluences
 - FEI4 >97% efficiency at 170 V at 9.4e15 n_{eq}/cm²
 - Low power dissipation: 15 mW/cm² at 1e16 n_{eq}/cm² and 180 V for 230 μm
 - Measurements with devices up to 2.2e16 n_{eq}/cm² performed (analysis on-going)
- First new-generation 3D production with small ITk pixel size
 - Characterisation and beam tests of FEI4s performed, irradiation on-going
 - Irradiation of strips with n up to 1e16 n_{eq}/cm^2 \rightarrow higher I_{leak} than for IBL-type still under investigation, but will need less V_{op}
- Single-sided thin 3D and RD53-chip geometry under way
 - 72, 100 + 150 μm SOI

24

50x50 µm²

BACKUP

n-Irradiated IBL-Type FEI3

- Uniformly n-irradiated FEI3 (JSI)
 - $\rightarrow I_{\text{leak}}$ measurements
 - Fluence dependence roughly as expected

 → dominated by radiation-induced bulk current
 - Power dissipation 15 mW/cm² at 1e16 n_{eq}/cm² at V_{op}=180 V for IBL-type geometry (L=71 µm, 230 µm thickness)

D. Vazquez (ITk Week Sep 2015)

Irradiation of IBL 3D Pixels

• PS IRRAD 23 GeV p (Nov 2014 + Fall 2015)

- FEI4 3D pixel detectors
- Non-uniform (12 mm FWHM beam)
 - \rightarrow difficult for IV/power dissipation studies
- In 2014 reached 9e15 n_{eq}/cm²
 - Assembled at IFAE + measured in ITk beam tests
- End 2015 further irradiation to 2.2e16 n_{ed}/cm² finished
 - To be assembled at CERN for May ITk beam test
 - Radiation hardness of FEI4 after p irradiation above 1e16 n_{ea}/cm² not clear
- \rightarrow make complementary studies with neutron irradiation for more uniform irradiation and to reach higher fluence

JSI Ljubljana n (May 2015)

- FEI4 has problem of Ta activation \rightarrow take FEI3
- Also have plenty FEI3s from CNM IBL wafers with great $V_{RD} > 100 V$
- Uniform irradiation good for IV/power dissipation study
- Fluences: 5e15, 1e16 (2x), 1.5e16 (2x), 2e16 n_{eg}/cm²
- Assembled at IFAE (bump- and wire-bond + gluing)

First time 3D pixel detectors irradiated to ITk fluences!

for irradiation and AIDA2020 support!

Thanks to Federico Ravotti for irradiation!

Wafer and Columns

G. Pellegrini, D. Quirion

IBL 3D Diameter Nominal 10 µm Maximum 13 µm Maximum 10 µm

7781 **3D Diameter** Nominal 8 µm

→ Increased aspect ratio 26:1 (nom.)

FE-I4s - 7781-4-D (25x100 2E)

Measurements by D. Vazquez

- Electroless UBM on first wafer at CNM
 - Poor UBM: Large regions of disconnected bumps
 - But small connected region
- Tuning to 2ke and 10@20ke and source scans successful -> device works
 - Note special structure (only 20% fraction of 50x50 pixels connected to FE-I4 bump, rest on GND without recording signal)

C1: 50x50 µm², 5V

Capacitance

Measurements by M. Carulla

Unit Cell	Electrode Distance [µm]	C/column [fF]		
25x25	18	69		
30x30	21	58		
25x50	28	42		
30x50	29	39		
50x50	35	37		

On diodes at wafer level

Different diode geometries

- All 100x100 3D columns each
- Capacitance increases with smaller electrode distance
 - Trend similar to simple capacitance of a cylinder (but 3D capacitance has also other contributions):

- Pixel capacitance (without bump)
 - 50x50 1E: 37 fF
 - 25x100 2E: 84 fF
 - 25x100 1E: << 42 fF (to be measured)

→ Within RD53 limit of 100 fF/pixel

Leakage Current of Irradiated Strips

IV 7781-4-M2 strip anneal.2670@RT 1e16n / cm²

Measurements by D. Vazquez, E. Cavallaro, J. Lange

- IFAE climate chamber on TCT PCBs
- Standard: set to -25°C
- T monitoring
 - Climate chamber internal: -25°C
 - T meter near door: -23.8°C
 - Pt100 on sensor M2: -24.2°C
 - \rightarrow variation up to 1.2°C
 - \rightarrow 10% difference in leakage current
 - \rightarrow values presented here are upper limits for -25°C
- Self-heating during IV (1s/point) max.
 0.2°C
- Annealing study up to 7d@RT (22-25°C)

Bias voltage (-V)

IV at -25°C 7781-4-M1 strip annealing@RT

IV at -25°C 7781-4-N1 strip annealing@RT

Bias voltage (-V)

7781-4-N1 60mii

Compilation of Current and Power Dissipation for IBL-Generation

Fluence	v			Thick-	Electrode Distance	Column Diam.	l/area for 230 um	P/area for 230 um
[n _{eq} /cm ²]	[V]	Irradiation	Sample	[µm]	[µm]	[µm]	[µA/cm ²]	[mW/cm ²]
5e15	160	n (Ljubljana)	CNM FEI3 Pixel [1]	230	71	13	46	7.4
		23 MeV p (KIT)	CNM34 FEI4 Pixel [2]	230	67	13	34	5.4
		23 MeV p (KIT)	CNM97 FEI4 Pixel [2]	230	67	13	39	6.3
		23 MeV p (KIT)	FBK11/87 FEI4 Pixel [2]	230	67	11	37	5.9
		n (Ljubljana)	CNM81 FEI4 Pixel [2]	230	67	13	46	7.3
		23 MeV p (KIT)	CNM strip 1 [3]	285	57	13	41	6.5
		23 MeV p (KIT)	CNM strip 2 [4]	285	57	13	44	7.0
		23 MeV p (KIT)	FBK strip [5]	230	57	11	38	6.1
		n (Ljubljana)	CNM diode [6]	50	57	6	48	7.7
1e16	180	n (Ljubljana)	CNM FEI3 Pixel [1]	230	71	13	83	14.9
		23 MeV p (KIT)	CNM strip 1 [3]	285	57	13	86	15.5
2e16	200	n (Ljubljana)	CNM FEI3 Pixel [1]	230	71	13	160	32.0
		23 MeV p (KIT)	CNM strip 2 [4]	285	57	13	98	19.6
		23 MeV p (KIT)	FBK strip [5]	230	57	11	158	31.6

[1] Measured by IFAE 2015 at -25°C, 7d@RT annealing (this talk)

[2] ATLAS IBL Coll., JINST 7 (2012) P11010, remeasured by IFAE 2015 at -25°C, 120min@60C annealing

[3] C. Fleta, RD50 Workshop June 2010, measured at -10°C, 1d@RT or 4min@80°C annealing

[4] M. Köhler, PhD thesis Uni Freiburg, 2011, presented at 20°C, few days@RT annealing (not corrected for)

[5] G.F. Dalla Betta et al., NIMA 765 (2014) 155, presented at -20°C, as irradiated (assumed 1d@RT annealing)
 [6] G. Pellegrini 27th RD50 workshop + M. Baselga, PhD thesis 2016 (in prep.), measured at -20°C, 8min@80°C annealing

Comparison between different 3D devices and irradiations (p, n)

- All values scaled to -25°C, 7d@RT annealing and 230 µm thickness
 - Good agreement: max. 39% deviation per fluence (usually better)
- Thickness scaling works (between 50 and 285 µm)
- Independent of
 - Column diameter (beetween 6 and 13 µm)
 - Electrode distance (between 57 and 71 μm)

HL-LHC Studies: High Eta

- Large clusters \rightarrow large total charge \rightarrow efficiency for whole cluster not a problem
- But for 50 µm pitch very small charge deposition per pixel (almost parallel tracks): 3300 e
- Testbeam campaign to measure CNM+FBK IBL FE-I4 devices with 80° angle in short pitch direction (50 μm)
 - 1000 + 1500 e threshold
 - Cluster size 24-27
 - >99% efficiency per pixel before irradiation

See talk by Ivan Lopez, RD50 Workshop June 2015

$80^{\circ}~(\eta{=}2.4) \rightarrow Q{=}3300$ e/pixel (50 $\mu m)$

R&D Performance Summary

 Charge multiplication at high fluences and V can further boost collected charge

Bias Voltage (V)