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TCT measurements with HVCMOS structures made on different substrate 
resistivities from different foundries:

AMS:  20 Ohm-cm 
• G. Krambergeret al,  Charge collection studies in irradiated 

HV-CMOS particle detectors, 2016 JINST11 P04007
• I. Perić et al. , Active pixel sensors in high-voltage CMOS 
technologies for ATLAS, 2012 JINST 7 C08002.
• ……..

X-FAB :100 Ohm-cm, Silicon On Insulator, SOI
•S. Fernandez-Perez et al., Charge collection properties of a depleted monolithic active pixel 
sensor using a HV-SOI process, 2016 JINST 11 C01063
• T. Hemperek et al,  A Monolithic Active Pixel Sensor for ionizing 

radiation using a 180 nm HV-SOI process, NIMA 796(2015)8-12

LFoundry: 2000 Ohm-cm, with and without back plane processing
• Piotr RYMASZEWSKI et al., Prototype Active Silicon Sensor in 150nm HR-CMOS 

technology for ATLAS Inner Detector Upgrade, 2016 JINST 11 C02045

All devices are made on p-type substrates

These samples are being investigated as candidates for HV-CMOS detectors for  trackers at HL-LHC 

From: S. Fenandez-Perez, TWEPP 2015 
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Edge TCT
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( more details: www.particluars.si )
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• TCT measurements with passive 
pixels (no amplifier in the n-well)
 collecting electrode connected 
to amplifier

http://www.particluars.si/


CHESS1,  not irraidated
Charge (25 ns), Bias = 120 V
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Laser beam direction

Chip surface

Scan across pixel: 
• 2.5 µm steps in y
• 5 µm steps in x

Edge-TCT
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Charge: 
integral of induced current pulse

Induced current after laser pulse
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Charge collection profile,  AMS (20 Wcm) 

Reactor neutrons, steps: 2e14, 5e14, 1e15, 2e15, 5e15, 1e16

DepthChip surface

Scan direction

• charge collection width increases with fluence up to ~ 2e15 n/cm2

 initial acceptor removal
• charge collection width falls with fluences above ~ 2e15 n/cm2

 initial  acceptor removal finished, space charge concentration increases with irradiation
• at 1e16 charge collection width still  larger than before irradiation
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Charge collection profile,  Xfab (100 Wcm) 

Reactor neutrons, fluence steps: 2e14, 5e14, 1e15, 2e15, 5e15

• large increase of charge collection region at lower fluence than AMS
• at 5e15 charge collection region narrower than before irradiation, but still 40 µm at 300 V 

chip surface
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Charge collection profile,  LFoundry (2000 Wcm) 

Reactor neutrons, fluence steps: 1e14, 5e14, 1e15, 2e15, 5e15

• no increase of charge collection width after irradiation seen
• no significant difference between samples with and without back plane (BP)
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LFoundry

Xfab

w0 and Neff free parameters
works for AMS and LFoundry

X-FAB: can’t fit with sqrt(Vbias)
 estimate Neff from width at  300 V

• AMS: large increase of width at low bias
• Xfab: “knee” at low bias 

0 width  up to 100 V at 5e15

Fit:

Charge profile width vs. bias voltage 
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eqeqceffeff gcNNN  ))exp(1(0

acceptor removal
Radiation introduced deep
acceptors:  g ~ 0.02 cm-1

Nc,Neff0 and c free parameters, g fixed

Nef vs fluence

Fit:

LFoundry: no removal (Nc ~ 0), fit: eqeffeff gNN  0

AMS and XFab:

Neff0 and g free

AMS
(CHESS and HV2FEI4)
from:
G. Kramberger et al.,
2016 JINST11 P04007
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 larger width than the largest after neutrons (at 2e15 n/cm2)

AMS CHESS1 chips (20 Wcm) irradiated with PS protons

24 GeV protons, 1 MeV eq. fluences : 3.3e14 n/cm2 and 4.6e14 n/cm2
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• fit compatible with Neff ~ 2e13 cm-3

• less than after ~2e15 n/cm2 reactor neutrons (Neff ~ 3e13 cm-3)
 faster initial acceptor removal
 large rise of profile width low bias

neutrons

Irradiation with PS protons 

Very fast rise at 
low bias voltage
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This work,
protons 80 V

E-TCT  with HVCMOSv3, (AMS 180 nm, 10 Ohm-cm) 
irradiated with PS protons and neutrons:
M. Fernandez, RD50 meeting, December 2015:

Larger depleted depth (lower Neff) at lower fluence than after neutron irradiation:
 larger acceptor removal constant c (and smaller gc ) after proton irradiation
measurements in agreement with  M. Fernandez et al.

Calculate depletion depth from Neff using:

eqeqceff0eff ))exp(1(  cgcNNN

Neutrons: c = 3e-15 cm2, gc = 0.02cm-1

Protons would fit c ~ 1e-14 cm2 or larger

Irradiation with PS protons 

Bias = 120 V
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Acceptor removal

• AMS (20 Ωcm, NA0 ~ 1015 cm-3): c ~ 4·10-15 cm2, Nc/Neff0 ~ 1, PS protons: c ~ 1·10-14 cm-2

• X-FAB (100 Ωcm, NA0 ~ 1014 cm-3 ): c ~ 1.3·10-14 cm2, Nc/Neff0 <~ 1

• LFoundry (2000 Ωcm, NA0 ~ 6·1012 cm-3 ), acceptor removal not observed in this study
 deep acceptor introduction rate comparable or faster than removal rate
 initial acceptor concentration low  difficult to observe reduction of a small value
 removal not complete Nc/Neff0 < 1 and/or small c to be observed in this measurement

Blue marker – charged hadron irradiated
Red marker – neutron irradiated X-FAB, neutrons

G. Kramberger et al, 10th Trento Meeting, Feb. 17-19, 2015

AMS, PS protons

AMS, neutrons
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Charge collection profile - annealing

Measurement before and after  80 minutes at 60 C
 10% to 20 % increase of charge collection width after annealing

Xfab

2e14
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Lfoundry:

2e15
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Not irradiated
2e15

• gaps before irradiation 
• guard ring gaps smaller after 2e15
• gaps better seen again after 1e16

1e16

Beam

to  HV and readout 
(via Bias-T)

• to ground

Scan across pixel array: AMS (20 Wcm)
Bias = 120 V, all 9 pixels connected to readout, charge (25 ns)
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BP,  40 V, Φ = 0
No BP, 40 V, Φ = 0

LFoundry, Structure F, all pixels read out

 no significant efficiency gaps between pixels
 no large difference between BP and no BP devices

Structure F, 3x3 pixels, 
125 µm x 33 µm

Laser
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BP, 5e15No BP, 5e15
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2e14Before irradiation

5e15

X-FAB: 100 Wcm, 4x4 pixel array, Bias = 300 V

HV
scope

HV
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Low charge High charge

 gaps less evident after high fluence

Efficiency gaps between pixels after irradiation
 nuch smaller gaps at 500 ns integration

 carriers drift to the oxide between n-wells
 behaves as “parasitic AC coupled electrode”

more detail showed at Trento workshop, Paris 2016:
https://indico.cern.ch/event/452766/contributions/1117348/

https://indico.cern.ch/event/452766/contributions/1117348/


Summary

• Edge-TCT measurements with passive test structures made on 3 different substrate resistivities: 
AMS : 20 Ωcm, X-FAB: 100 Ωcm, LFoundry:  2000 Ωcm
 charge collection profiles measured up to 1e16 n/cm2

 significant charge collection width after highest fluence in all samples

• AMS and X-FAB: large increase of charge collection width after irradiation with neutrons
dependence  of charge collection width with fluence consistent with effective acceptor removal 
 acceptor removal in X-FAB faster than in AMS  faster removal at larger initial resistivity

• AMS: large increase of charge collection width after irradiation with PS protons
 increase larger and at lower fluence than for neutrons
 faster acceptor removal and smaller deep acceptor introduction rate

 fast increase of charge collection width, faster than sqrt(V) at low bias voltage (seen also after 
neutron irradiation)

• LFoundry: charge collection width decreases with increasing fluence
 introduction of deep acceptors faster than removal of initial acceptors

• removal not complete Nc/Neff0 < 1 and/or too slow
• compensated material? (donoros and acceptors removed at different rate  we only see the sum)

 no significant difference between samples with and without back plane contact
 no significant efficiency gaps between pixels

•X-FAB: large efficiency gaps between pixels after irradiation (at 25 ns integration times)
 low efficiency between n-wells due to parasitic charge collection 


