E-TCT measurements of irradiated HV-CMOS test structures

<u>I. Mandić¹</u>, G. Kramberger¹, V. Cindro¹, A. Gorišek¹, B. Hiti¹, M. Mikuž^{1,2}, M. Zavrtanik¹, et al.

¹Jožef Stefan Institute, Ljubljana, Slovenia ²Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

TCT measurements with HVCMOS structures made on different substrate resistivities from different foundries:

AMS: 20 Ohm-cm

- G. Krambergeret al, Charge collection studies in irradiated HV-CMOS particle detectors, 2016 JINST11 P04007
- I. Perić et al. , Active pixel sensors in high-voltage CMOS technologies for ATLAS, 2012 JINST **7 C08002.**

•

X-FAB :100 Ohm-cm, Silicon On Insulator, SOI

- •S. Fernandez-Perez et al., Charge collection properties of a depleted monolithic active pixel sensor using a HV-SOI process, 2016 JINST 11 C01063
- T. Hemperek et al, A Monolithic Active Pixel Sensor for ionizing radiation using a 180 nm HV-SOI process, NIMA 796(2015)8-12

LFoundry: 2000 Ohm-cm, with and without back plane processing

• Piotr RYMASZEWSKI et al., Prototype Active Silicon Sensor in 150nm HR-CMOS technology for ATLAS Inner Detector Upgrade, 2016 JINST 11 C02045

All devices are made on **p-type** substrates

These samples are being investigated as candidates for HV-CMOS detectors for trackers at HL-LHC

Edge TCT

 TCT measurements with passive pixels (no amplifier in the n-well)
 → collecting electrode connected to amplifier

(more details: <u>www.particluars.si</u>)

Edge-TCT

Igor Mandić, Jožef Stefan Institute, Ljubljana Slovenia

RD50 Workshop, June 2016, Torino

<u>Charge collection profile</u>, AMS (20 Ω cm)

Reactor neutrons, steps: 2e14, 5e14, 1e15, 2e15, 5e15, 1e16

- charge collection width increases with fluence up to ~ 2e15 n/cm^2
 - → initial acceptor removal
- charge collection width falls with fluences above ~ 2e15 n/cm²
 - → initial acceptor removal finished, space charge concentration increases with irradiation
- at 1e16 charge collection width still larger than before irradiation

<u>Charge collection profile, Xfab (100 Ω cm)</u>

Reactor neutrons, fluence steps: 2e14, 5e14, 1e15, 2e15, 5e15

- large increase of charge collection region at lower fluence than AMS
- at 5e15 charge collection region narrower than before irradiation, but still 40 μm at 300 V

<u>Charge collection profile</u>, LFoundry (2000 Ω cm)

Reactor neutrons, fluence steps: 1e14, 5e14, 1e15, 2e15, 5e15

- no increase of charge collection width after irradiation seen
- no significant difference between samples with and without back plane (BP)

Charge profile width vs. bias voltage

Xfab: "knee" at low bias
 0 width up to 100 V at 5e15

Igor Mandić, Jožef Stefan Institute, Ljubljana Slovenia

<u>*N_{ef}* vs fluence</u>

AMS CHESS1 chips (20 Ω cm) irradiated with PS protons

24 GeV protons, 1 MeV eq. fluences : 3.3e14 n/cm² and 4.6e14 n/cm²

 \rightarrow larger width than the largest after neutrons (at 2e15 n/cm²)

Irradiation with PS protons

- fit compatible with N_{eff} ~ 2e13 cm⁻³
- less than after ~2e15 n/cm^2 reactor neutrons (N_{eff} ~ 3e13 cm⁻³)
 - ightarrow faster initial acceptor removal
 - ightarrow large rise of profile width low bias

Irradiation with PS protons

Larger depleted depth (lower N_{eff}) at lower fluence than after neutron irradiation:

 \rightarrow larger acceptor removal constant *c* (and smaller g_c) after proton irradiation

→ measurements in agreement with M. Fernandez et al.

Calculate depletion depth from N_{eff} using:

E-TCT with HVCMOSv3, (AMS 180 nm, 10 Ohm-cm) irradiated with PS protons and neutrons: M. Fernandez, RD50 meeting, December 2015:

Acceptor removal

• AMS (20 Ω cm, N_{A0} ~ 10¹⁵ cm⁻³): c ~ 4·10⁻¹⁵ cm², N_c/N_{eff0} ~ 1, PS protons: c ~ 1·10⁻¹⁴ cm⁻²

- X-FAB (100 Ω cm, N_{A0} ~ 10¹⁴ cm⁻³): c ~ 1.3 \cdot 10⁻¹⁴ cm², N_o/N_{eff0} <~ 1
- LFoundry (2000 $\Omega cm,$ N_{A0} ~ 6·10^{12} $cm^{\text{-3}}$), acceptor removal not observed in this study
 - → deep acceptor introduction rate comparable or faster than removal rate
 - \rightarrow initial acceptor concentration low \rightarrow difficult to observe reduction of a small value
 - → removal not complete N_c/N_{effo} < 1 and/or small c to be observed in this measurement

Charge collection profile - annealing

Measurement before and after 80 minutes at 60 C \rightarrow 10% to 20 % increase of charge collection width after annealing

200

5e15

200

150

100

Lfoundry: que 1.4 arb Charge (25 ns) Charge (25 ns) 14 Struct A, Bias = 100 V $\Phi = 1e14 \text{ n/cm}^2$ Struct A, Bias = 100 V 1.2 1.2 Φ = 1e15 n/cm² Black: not annealed Black: not annealed Red: 80 min at 60 C Red: 80 min at 60 C 0.8 0.8 Full symb. no BP Full symb. no BP Empty symb. BP Empty symb. BP 0.6 0.6 0.4 0.4 1e14 0.2 0.2 0 47 0 0 50 100 150 0 50 100 150 200 250 y (µm) arb arb Charge (25 ns) 1.4 1.4 Struct A, Bias = 100 V Charge (25 ns) Struct A. Bias = 100 V $\Phi = 5e14 \text{ n/cm}^2$ 1.2 1.2 $\Phi = 5e15 \text{ n/cm}^2$ Black: not annealed Black: not annealed Bed: 80 min at 60 C Bed: 80 min at 60 C 0.8 0.8 Full symb. no BP Empty symb. BP 0.6 0.6

0.4

0.2

0

50

0

Xfab

1e15

0.6

0.4

0.2

04

0

50 100 150 200 250 350

y (µm)

300

Scan across pixel array: AMS (20 Ωcm)

Bias = 120 V, all 9 pixels connected to readout, charge (25 ns)

LFoundry, Structure F, all pixels read out

- → no significant efficiency gaps between pixels
- → no large difference between BP and no BP devices

<u>X-FAB: 100 Ω cm, 4x4 pixel array, Bias = 300 V</u>

 → carriers drift to the oxide between n-wells
 → behaves as "parasitic AC coupled electrode"
 → more detail showed at *Trento workshop, Paris 2016*: https://indico.cern.ch/event/452766/contributions/1117348/

Efficiency gaps between pixels after irradiation → nuch smaller gaps at 500 ns integration

ightarrow gaps less evident after high fluence

Summary

- Edge-TCT measurements with passive test structures made on 3 different substrate resistivities: AMS : 20 Ω cm, X-FAB: 100 Ω cm, LFoundry: 2000 Ω cm
 - \rightarrow charge collection profiles measured up to 1e16 n/cm²
 - \rightarrow significant charge collection width after highest fluence in all samples
- AMS and X-FAB: large increase of charge collection width after irradiation with neutrons
 → dependence of charge collection width with fluence consistent with effective acceptor removal
 → acceptor removal in X-FAB faster than in AMS → faster removal at larger initial resistivity
- AMS: large increase of charge collection width after irradiation with PS protons
 - ightarrow increase larger and at lower fluence than for neutrons
 - ightarrow faster acceptor removal and smaller deep acceptor introduction rate
 - → fast increase of charge collection width, faster than sqrt(V) at low bias voltage (seen also after neutron irradiation)
- LFoundry: charge collection width decreases with increasing fluence
 - ightarrow introduction of deep acceptors faster than removal of initial acceptors
 - removal not complete N_c/N_{eff0} < 1 and/or too slow
 - compensated material? (donoros and acceptors removed at different rate \rightarrow we only see the sum)
 - ightarrow no significant difference between samples with and without back plane contact
 - ightarrow no significant efficiency gaps between pixels

•X-FAB: large efficiency gaps between pixels after irradiation (at 25 ns integration times)

ightarrow low efficiency between n-wells due to parasitic charge collection