28th RD50 Workshop – Torino, June 7 2015

Results from the first 300-micron thick LGAD production at FBK

Marco Ferrero

Outline

- FBK 300 μm LGAD production layout;
- Detector characterization:
 - Current Vs Voltage Bias (Measurements and setup);
 - Gain (Measurements and setup);
 - Time resolution (Measurements and setup);
- Beam test, preliminary results;

LGAD production layout

Wafer Layout for the 300µm production

Characteristics:

- Thickness 300µm;
- 13 Wafers produced;
- 5 Splits of gain in 2% steps;
- Multiple structures (single pad, multi-pad, array, strip);
- n-side segmentation;
- p-side segmentation;

Goals of this production:

- Investigate the gain layer
- Demonstrator of LGAD technology at FBK

LGAD production layout

Characteristics:

- Thickness 300µm;
- 13 Wafers produced;
- 5 Splits of gain in 2% steps;
- Multiple structures (single pad, multi-pad, array, strip);
- n-side segmentation;
- p-side segmentation;

Goals of this production:

- Investigate the gain layer
- **Demonstrator of LGAD** technology at FBK

2015

7

Single pad LGAD

Single pad size; 0,25 mm²/1 mm²/4 mm²/9 mm²/25mm²

Detector characterization

Laboratory measurements:

- **Current Vs Voltage curve:** measurement of the Breakdown Voltage and of the detector leakage current;
- **Signal acquisition:** measurement of the detector gain and time resolution;

IV measurements (laboratory setup)

Keysight B1505A Power Device Analyzer / Curve Tracer

Modules

- High Voltage SMU: Max Range (±3000V, ±4mA);
 Min Range (200V, 1nA);
- Medium Power SMU: Max Range (±100V, ±100mA); Min Range (0,5V, 1nA);

Probe station

The electric contacts was made with coaxial needles

IV measurements

IV measurements

Structure tested:

LGAD single pad of the Wafer 3 (Split of gain: 2)

Gain and time resolution (laboratory setup)

Sensor tested

Gain measurements

Gain = LGAD area signal/DIODE area signal

Time Resolution measurements

Measurements using constant fraction at 50% of the amplitude

Wafer 3 \rightarrow Time resolution of 91 ps at 800 V

Wafer 10 \rightarrow Time resolution of 55ps at 500 V

Beam test setup

FBK LGADs on CERN and Torino Board

UCFS Board with 75µm CNM and 300µm FBK LGADs

TOTEM-UCFS Board with 300µm FBK LGAD

Second stage amplifier for UCSC board/CERN board/ **Torino board:**

- BB amplifier (Cividec);
- CSA amplifier (Cividec);
- Cardarelli amplifier (CAEN);

Telescope for UCSC **Board**

Beam test very preliminary results on FBK detectors (TOTEM-UCSC Board)

TOTEM board (for diamond) modified by UCSC to match UFSD impedance and signal charge

3 amplification stage for a gain of about 200

FBK detector (4 mm²) of the wafer 3

Trigger: SPM

Time resolution less than 30ps

Beam test very preliminary results on FBK detectors (TOTEM-UCSC Board)

Conclusion

The preliminary measurements on the FBK's LGAD give good results:

- Breakdown voltage in agreement with the simulation
 ~ 900 V for wafer 3
 ~ 500 V for wafer 10
- Internal gain in agreement with the simulation Wafer 3: between 7 and 13 Wafer 10: between 14 and 60
- Good time resolution for 300µm detectors
 Wafer 3 and BB amplifier: 91 ps at 800 V (laboratory measurement)
 Wafer 10 and BB amplifier: 55 ps at 500 V (laboratory measurement)
 Wafer 3 and TOTEM board: 97 ps (beam test)

Acknowledgements

We kindly acknowledge the following funding agencies, collaborations:

- INFN Gruppo V
- Horizon 2020, grant UFSD669529
- Horizon 2020, grant INFRAIA
- Ministero degli Affari Esteri, Italy,MAE, "Progetti di Grande Rilevanza Scientifica"
- U.S. Department of Energy grant number DE-SC0010107
- RD50, CERN

Backup

IV measurements (focus at low voltage)

The foot at low voltage shows the depletion of the gain layer

The foot shifts towards high voltage with gain increasing