Phase II planar pixel sensors:

Simulation study of interpixel isolation and surface passivation by a thin-film ALD-layer

28th RD50 Workshop, 6-8 June 2016

T. Peltola¹⁾, P. Luukka¹⁾, J. Härkönen²⁾

¹⁾Helsinki Institute of Physics, CMS Tracker Upgrade Project ²⁾Ruđer Bošković Institute, Zagreb

OUTLINE

Motivation
 Non-irradiated/irradiated 25x100 pixels:

 Interpixel resistance, R_{int}(N_{ps},d_{ps},Q_f)
 Charge sharing(N_{ps},Q_f)
 p-stop/p-spray isolation vs ALD-layers with negative oxide charge

 Breakdown voltage, V_{bd}

□ Thin n-on-p Phase II planar pixel sensors:

- Finer granularity increases local electric fields → lower V_{bd}
- More implants → higher capacitances (= noise, lower rise time of signal)

\rightarrow optimize:

- Isolation doping levels & depths (V_{bd}, charge sharing)
- Mask levels (=price)
- Number of high T processing steps

50x50: Wide design w/ p-spray

Normal vs Wide design: Breakdown voltages

Non-irradiated 25x100 pixel: R_{int}

Irradiated 25x100 p-spray pixel: R_{int} □ Defect models: Design: as on previous slide; T=253 K, V=-1 kV Non-uniform 3- $\Box \Phi = 1.4e15 n_{eq} cm^{-2}, Q_f = 1.6e12 cm^{-2}$ level model 1.00E+11 Proton model [2] n^+ depth = 1.5 μ m Isolation due to P-spray doping scan: $R_{bias} = 1 \Omega$ 1.00E+10 [2] R. Eber, PhD Thesis, surface traps 3 N_{ps} depths KIT, 2013 1.00E+09 0 Q 1.00E+08 ---1 μm: 3-levels @ surface **a** 1.00E+07 **b** 1.00E+06 ----1 μm: Proton model -- 1.5 µm: 3-levels @ surface -O-2.5 µm: 3-levels @ surface **Isolation due to** O 3D 1 um: 3-levels at surface 3D-design as on 1.00E+05 p-spray previous slide 1.00E+041.00E+03 **Pixels shorted?** 1.00E+02 1.00E+15 1.00E+05 1.00E+07 1.00E+09 1.00E+11 1.00E+13 1.00E+17 p-spray doping [cm-3]

□ 3-levels close to surface:

- $d_{ps} \le 1.5 \ \mu m$: Local R_{int} minimum for 1e13 cm⁻³ $\le N_{ps} \le 1e16 \ cm^{-3} \rightarrow surface traps compensated by p-spray acceptors (role of Q_f?)$
- $d_{ps} = 2.5 \ \mu m$: No local R_{int} minimum, breakdown @ $N_{ps} = 1e17 \ cm^{-3}$ (also for $d_{ps} = 1.5 \ \mu m$)

Charge sharing corresponding to R_{int} plot on previous slide
 Charge injection: middle of centermost pixel

Charge sharing changes as step-function: no intermediate values **R**_{int} ~ 5 kΩ: pixels shorted

Irradiated 25x100 p-spray pixel: Very high Q_f

Irradiated 25x100 pixel: R_{int} of p-stop & moderated p-spray

□ Normal design with (common) p-stop: Interpixel gap = 15 µm, p-stop width = 5 µm □ Φ = 1.4e15 n_{eq} cm⁻², Q_f = 1.6e12 cm⁻² @ T=253 K, V=-1 kV

□ All d_{pst} : pixels isolated at all values of $N_{pst} \rightarrow surface$ traps compensated only at location of p-stop

Suitable tool to study depth distribution of N_{it}: P-spray with varying N_{ps} & d_{ps}

Atomic Layer Deposition (ALD)

- Provides potentially interesting material systems: high-ε materials HfO₂, Ta₂O₅ etc.
- Possible to tailor amount & type of oxide charge → negative charge → segmentations isolated without implantations
- Pinhole free deposition \rightarrow practically stress free
- Applicable on large surfaces
- Low T process, typically ~300° C

http://www.beneq.com/atomic-layer-deposition.html

ALD-passivation layers: Material dependence

IELS

25x100 pixel: ALD-passivation layers

CMS Phase II pixel 3D-structure:

□ 150 µm thick n-on-p 25x100 (normal design) pixel corner region
 □ 52 nm thick ALD-layers

□ ALD-layers @ V \approx -1 kV:

- No breakdown for expected values of Q_f for non-irradiated device
- ~30 V higher V_{bd} for hafnia @ both values of Q_f

P-stop: Clear benefit to V_{bd} from both ALD-layers for whole Q_f range

100 µm

6.6.2016

Alumina: E-fields

@ Q_f = -1e11 cm⁻² → breakdown @

MO edge

25x100 interpixel resistance:

- Low Φ/Non-irradiated @ V=500 V: pixels isolated without p-stop/p-spray at expected Q_f
- Φ=1.4e15 n_{eq}cm⁻², Q_f = 1.6e12 cm⁻² @ V=1 kV:
 - p-stop: pixels isolated at all values of N_{pst} & d_{pst}
 - p-spray: R_{int} has local minimum for N_{ps} when $d_{ps} ≤ n^+$ depth
 - \rightarrow Could be used to study depth distribution of N_{it}: p-spray with varying N_{ps} & d_{ps}

• Moderated p-spray: No local R_{int} minimum when $N_{center} \ge 2e16 \text{ cm}^{-3}$

□ ALD-layer passivation:

- Higher V_{bd}: Layer with high-ε (> 20) & increased thickness (> 50 nm)
- 25x100 pixels w/ 52 nm ALD-passivation: No breakdown @ V=1 kV & Q_f=1e11 cm⁻² → clear benefit to p-stop & similar performance to moderated p-spray design

6.6.2016

Back-up: 3D 25x100 pixel: structure

6x8 µm² DC-coupling □ 150 µm thick 25x100 n-on-p pixel sensor, wide with p-spray vias as in 50x50 pixels □ MO, oxide & moderated p-spray as in 50x50 pixels 10 µm 15 µm □ n⁺ implant & rounded corners: as in 50x50 pixels □ Via position: 90 µm/4=22.5 µm from implant center □ Mesh points: 133k p-spray Bulk: p 90 µm n+ oxide 10 µm

□ Corner region chopped from 9 pixel structure for simulation time optimization

□ Corner region yields identical LC, V_{bd} to 9 pixel structure → sufficient for E-field, V_{bd} simulations

Back-up: 50x50 pixel: corner region cut, Normal vs Wide

Wide: p-stop

Back-up: 25x100 pixel: corner region cut, Normal vs Wide

6.6.2016

Back-up: ALD grown Al₂O₃: Electrical passivation

15 - Studied by µPCD method - Thermally dry oxidized wafer -Thermally oxidized SiO with very high bulk lifetime 10 - Assumption: SiO₂ passivation Counts reduces $S_r \rightarrow 0$ - ALD deposition of Al₂O₃ 5 - Subsequent annealing at 370°C / 30min 0 2000 4000 6000 1000 8000 52 nm Al₂O₃: Lifetime [µs] 25 20 **High** negative Q_{ox} 20 Al_O_ as-grown after sintering \rightarrow 15 bulk recombination Al_O_ sintered Low negative 15 Counts 10 Counts Q_{ox} after ALD dominates → surface recombination [1] dominates 0 600 0₀ 200 400 800 1000 2000 10000 4000 6000 8000 Lifetime [µs] Lifetime [µs]

PHYSICS