

Comprendre le monde, construire l'avenir

28th RD50 Workshop on radiation

Doping Profile Evaluation of neutron Irradiated structures

<u>Evangelos – Leonidas Gkougkousis¹</u>

Abdenour Lounis^{1,2}, Clara Nellist¹

- ¹Laboratoire de l'Accélérateur Linéaire
- ²Universite Paris SUD

Torino – June 8, 2016

Overview

Introduction

• Introduction

• SiMS Methodology and proton irradiated results

Phosphorus profiles

Boron profiles

LGAD test structures

Conclusions

• Phosphorus test structures

• CiS implanted structure

• Boron test Structures

- The $B \rightarrow Li$ neutron capture
- ADVACAM implanted structures

• Irradiated LGAD doping profile

- Test structure definition
- C-Stop evaluation under neutron irradiation
- Conclusion

Introduction

Secondary Ion Mass Spectroscopy (SiMS)

- Analytical technique to characterize near surface layers (10µm)
- Primary ion beam sputter material off target
- ✓ Concentration resolution up to 10¹³ atoms/cm³
- ✓ Depth resolution down to 5nm
- ✓ Total dopant profile
- ✓ Destructive method

E. L. Gkougkousis

rinciples

Introduction

Secondary Ion mass Spectrometry Calibration

Relative Sensitivity Factor

- ✓ Calculated in each measurement campaign
- ✓ Converts measured current to absolute concentration
- ✓ Estimated using specific calibration targets
- ✓ Crucial to calculate total implanted dose

RSF Estimation		RSF (atoms/cm ³)		δDCE
		Individual	Mean	OKSF
Phosphorus	1st	9.91E+22	0 005+33	5.08E+21
	2nd	9.84E+22	9.005722	
Boron	1st	6.02E+22	6 175 - 22	3.70E+21
	2nd	6.31E+22	0.1/6+22	

Introduction

Proton irradiated profiles

- No alteration for phosphorus implanted samples
- Indications for reduction of total implant in boron implanted samples

 1.39 ± 0.62

atoms/cm³

 0.987 ± 0.471

•Phosphorus Test structures

Cis n-in-n 10¹⁵/cm² @130keV

- The bopping profile o the neutron irradiated samples seems unaffected
- Agreement within uncertainties
- Higher detection limit due to timing constraints induces deviations at lower part of the profiles

15

Boron test structures

The $B \rightarrow Li$ Neutron capture

- Boron neutron capture with thermal neutrons
- Well known reaction in medical physics
- Used for cancer detection in brain tumor cases
- Very low expected cross-section

Boron test structures

8 /6 / 2016

Boron test structures

ADVACAM implanted structures

Depth (nm)

LGAD Irradiated doping profile

Test structure and regions

- ➢ Goal: production process evaluation
- Test structure with six distinct regions
- Different doping parameters per regions
- Comparison with simulations

- L1 P-Stop, C-Stop Well
- L2 P-Well (P Multiplication)
- L3 JTE
- L4 N-Well
- L4 + L2 N-Well over P-Well
- L4 + L3 N-Well over JTE

• Irradiated LGAD doping Protile 2.1015 N thermal neutrons LGAD Measurements, C-Stop (L1) - Boron 1.1015 N theutrons LGAD R7859/W5 - P Stop, C-Stop(L1) 1.E+10 1.E+09 1.E+08 -11B Post-Irradiated -12C 1.E+07 — 7Li -14N (cnts/sec) 1.E+06 1.E+05 1.E+04 1.E+03 1.E+02 1.E-1.F+00 1.0E+03 2.0E+03 3.0E+03 4.0F+03 5.0F+03 6.0E+03 7.0E+03 8.0E+03 Depth (nm) Layer Thickness (nm) Ion Velocity (nm/sec)

SiM	MS Metal Layer Screen Oxide		Au	55 ± 6	2.8 ± 1.0
	Nitride Passivation	Latter thermal	Si3N4 Passivation	223 ± 7	3.1 ± 0.6
		Oxide	Primary Si02	382 ± 9	2.4 ± 0.4
\checkmark	 Presence of Li on the interface Only in traces and not within bulk 		Post implantation SiO2	929 ± 7	2.6 ± 0.3
\checkmark			Silicon	6014 ± 13	2.5 ± 0.1

• Irradiated LGAD doping Profile

LGAD Measurements, C-Stop (L1) - Boron

 No significant variation observed
 A systematic displacement is present in all profiles towards deeper regions but of no relation with irradiation

2•10¹⁵N thermal neutrons

Same RSF definition

Slightly different

Faster abrasion and

higher detection limit

on irradiated profile

experimental

conditions

•

•

•

Conclusions

Outcome and plans

- The evolution of the total doping profile with radiation has been studied
- Results with neutrons do not indicate any significant deviation from non-irradiated profiles
- Presence of Lithium has been detected but in significantly small quantities
- Any deviations from non-irradiated profiles can be attributed to experimenta effects and are of systematic nature.