Two Photon Absorption-TCT of neutron irradiated pad detectors

UPV

Marcos Fernández¹, Richard Jaramillo, David Moya, Javier González Iván Vila

EHU

Raúl Montero

Salvador Hidalgo

28th RD50 workshop – 6 - 8 June 2016, Torino (Italy)

Rogelio Palomo

Gregor Kramberger

Two Photon Absorption

Single

energy

TPA Two Photon <u>Absorption</u>

Energy confinement

Marcos Fernandez - 28th RD50 Workshop – June 2016, Torino (Italy)

Motivation

Ionizing radiation creates **deep energy levels** within the band gap that will enhance the **S**ingle Photon Absorption (increasing of the alpha parameter) in detriment of the Two Photon Absorption signal.

Quantify the possible radiation-induced increment of the SPA process with respect to the TPA process

<u>Outline</u>

→ Two Photon Absorption and experimental setup

→ Results for n-irradiated 10^{13} , 10^{14} , 10^{15} , 10^{16} n_{eq}/cm² Comparison of TPA at 1300 nm (absorption maximum) and 1500 nm (λ commercially available)

RD50-2015-03 project

Evaluation of the potential of a Transient Current Technique based on Two-Photon-Absorption (TPA) process

28th RD50 workshop – 6 - 8 June 2016, Torino (Italy)

Two photon absorption basics (I)

4

TPA laser facility

➔ Measurements conducted at the Singular Laser Facility of the UPV (Bilbao, Spain).

http://www.ehu.es/SGIker/es/laser/

→ Very flexible and tunable laser system (intensity, λ , pulse duration...)

- → Access granted via RD50 collaboration.
- → See backup for full specs

In this study

 $(\lambda, \Delta t)$ =(1300 nm,240 fs) or $(\lambda, \Delta t)$ =(1500 nm, 40 fs)

Spectral resol.~10 nm

 TPA-TCT: In a "<u>z-scan</u>" the beam is moved perpendicularly to the pad. SPA-TCT: invariant in z coordinate.

2) Top injection TPA-TCT: Because the spot is "point-like" we can induce current at different depths and study currents, depletion width... as a function of depth and voltage. It is like an edge-TCT scan.

3) Augmentation factor air-Si: Due to the different refraction index of Si w.r.t. air and the steep incidence of the focused beam a vertical

movement of ΔZ_{air} corresponds to:

$$\Delta z_{si} \sim n_{si}(\lambda) \cdot \Delta z_{aii}$$

28th RD50 workshop – 6 - 8 June 2016, Torino (Italy)

Differences SPA-TCT and TPA-TCT (II): Intensity scans

• An α -scan is an intensity scan where the focus is outside the detector. No contribution of TPA. Since λ >>1100 nm no SPA signal should be measured.

An α -scan in an irradiated detector will tell us about the trapping assisted SPA charge carrier generation

28th RD50 workshop – 6 - 8 June 2016, Torino (Italy)

 A β-scan is an intensity
 scan where the focus is inside the detector. Only TPA should be created.

An irradiated detector with $\alpha \neq 0$ will exhibit a mixture of SPA and TPA ⁸

<u>Samples</u>

• FZ diodes from the LGAD run 7509 (reference diodes \rightarrow no amplification). All from wafer 1. Sensor glued on PCB for TCT measurements. Fluences 10¹³-10¹⁶ n_{eq}/cm² (neutron irradiation at Ljubljana).

No intentional annealing of samples (transport, handling...). A systematic annealing study needs to be conducted soon.

- Top light injection
 All measurements at T_{PCB}=-15 °C (RH and T monitored) except 10¹⁵ n_{ef}/cm² at -20 C
- Readout chain

Sensor \rightarrow Bias Tee \rightarrow attenuation (19-28 dB) \rightarrow Amplifier 50 dB \rightarrow Scope *Note: some measurements taken without amplifier* HV

- Pulse duration is measured before entering the Faraday Cage. Pulse duration varies after each optical element, in particular the objective. We will measure it during the next access.
- Some measurements taken 2 weeks ago. Still digesting...

Neutron irradiated diodes 10^{13} , 10^{14} , 10^{15} , 10^{16} n_{eq}/cm² (1300 nm, 240 fs)¹

¹ Figures measured at the entrance of the Faraday cage, before the focusing optics

Charge profiles(z ; 14 ns) at λ =1300 nm

x [mm]

V(t,z ; fixed V_{bias}) maps at λ =1300 nm

14

SPA subtraction (irradiated detector)

Ζ

TPA profiles (SPA corrected) 1300 nm

T=-20 C

Charge profiles (raw)

Charge profiles after SPA correction.

Some surplus of collected charge after the detector: reflection in the interface Si/air. Looks like SPA (incoherent)

10^{15} , 10^{16} n_{eq}/cm² (1500 nm, 40 fs)¹

¹ Figures measured at the entrance of the Faraday cage, before the focusing optics

(1500 nm, 240 fs)

Higher TPA to SPA ratios than at 1300 nm, 40 fs (it was 1.6 and 1.4 respectively) F (A

Preliminary analysis on (α, β)

Higher α at 1300 nm

 $10^{15} n_{eq}^{2}/cm^{2}$

 $\alpha(\bullet, 1300 \text{ nm}, -20 \text{ C}) > \alpha(o, 1500 \text{ nm}, -15 \text{ C})$ α decreases with wavelength Also α decreases with T The effect of λ in α is stronger than the effect of T

10¹⁶ n_{eq}/cm²:

α(▼1300 nm)>α(∇1500 nm)
Lower SPA at higher wavelength

The β scan has both components: $\alpha + \beta$. Conclusions on β not direct (correlation)

> 1) Fit α -scan to $\mathbf{Q} = \alpha \mathbf{I}$ 1.1) Freeze α 3) Fit β -scan to $\mathbf{Q} = \alpha \mathbf{I} + \beta \mathbf{I}^2$

Effect of different pulse durations?

Conclusions

Ionizing radiation creates deep energy levels within the band gap that enhance the Single Photo Absorption process (increasing linear absorption α).

A method to remove the additional SPA absorption and improve the TPA signal has been successfully applied.

For irradiated detectors, TPA-TCT at (λ =1500 nm, 40 fs) exhibits lower linear absorption (α) and higher non-linear TPA probability (β) than TPA(1300 nm, 240 fs)

Preliminary data but clear conclusion: TPA-TCT is validated for both irradiated and non-irradiated sensors.

Note 1: TPA(1300 nm,40 fs) was tested but objective seems to stretch this pulse. Pulse duration after the focusing optics will be measured during next access.

Note 2: TPA-TCT already done for unirradiated LGAD and diamond

Extra information

W1D2 10¹⁵ n_{eq}/cm^{2} , Laser: 1300 nm, 240 fs, $T_{linkam} = -20 \text{ C}$, $T_{PCB} = -14 \text{ C}$ W1D2 10¹⁵ n_{eq}/cm^{2} , Laser: 1300 nm, 240 fs, $T_{linkam} = -27 \text{ C}$, $T_{PCB} = -20 \text{ C}$ W1D2 10¹⁵ n_{eq}/cm^{2} , Laser: 1500 nm, 40 fs, $T_{linkam} = -20 \text{ C}$, $T_{PCB} = -15 \text{ C}$ W1C6 10¹⁶ n_{eq}/cm^{2} , Laser: 1300 nm, 240 fs, $T_{linkam} = -23 \text{ C}$, $T_{PCB} = -16 \text{ C}$ W1C6 10¹⁶ n_{eq}/cm^{2} , Laser: 1500 nm, 40 fs, $T_{linkam} = -23 \text{ C}$, $T_{PCB} = -16 \text{ C}$ U1C6 10¹⁶ n_{eq}/cm^{2} , Laser: 1500 nm, 40 fs, $T_{linkam} = -23 \text{ C}$, $T_{PCB} = -16 \text{ C}$ LGAD w6H11, not irradiated, Laser: 1500 nm, 40 fs, Room T

Detector \rightarrow Bias Tee \rightarrow 28 dB att \rightarrow Ampli \rightarrow Scope 28 dB attenuation (otherwise saturation of amplifier at 1000V)

Low energy scan

At low energy alpha dominates. Parabola below the straight line

20160525_1045_W1D2_1000V_M20C_33uA_1300nm_low_energy_baseline_substrated

Reflected light has same collection time as the direct signal

Maybe focus is reflected back into the detector

