TCT measurements of n-type MCz diodes after irradiation with 70 MeV protons and 300 MeV pions

08-06-2016
William Holmkvist
Co-Authors: Daniel Muenstermann, Rebecca Carney, Christian Gallrapp and Karola Dette
Background and motivation

N-in-N MCz detectors show peculiar properties:

- No space charge sign inversion for 23 GeV protons
- Relatively stable V_{fd} for 200 MeV pions
- Additive space charge characteristics might enable the usage of cancelling effects to keep V_{fd} low/stable
 - Optimal N_{eff} stability at 2 parts proton and 1 part neutron radiation. Potential compensation of Neff for intermediate radii in ATLAS/CMS for n-in-n MCz.
- Results from: Kramberger et al., NIM A 612 (2010) 288 and NIMA A 609 (2009) 142
From previous results we know that 24 MeV proton irradiated n-in-n MCz behave like FZ silicon, while 23 GeV proton irradiation do not.

- LHC background energy spectrum peaks around 100-200 MeV
- 70 MeV proton irradiated samples acquired to investigate their behavior.
 - 1e13 n_{eq}/cm^2, 1e14 n_{eq}/cm^2, 5e14 n_{eq}/cm^2
- 200 MeV pion literature results showing ambiguous behavior.
- 300 MeV pion irradiated samples acquired to see if the results can be clarified
 - 1e13 n_{eq}/cm^2, 1e14 n_{eq}/cm^2, 2.76e14 n_{eq}/cm^2, 4.26e14 n_{eq}/cm^2
TCT+ setup at CERN

- Red Laser illumination possible from top and bottom side of DUT
- 2.5 GHz Agilent Scope
- Flushing with dry air
- Computer controlled peltier cooling down to -20°C
- Bias voltage up to 1000V

Pulsed laser with a trigger frequency of 200Hz

Red (660nm) IR (1064nm)
Particulars TCT setup at Lancaster University

- IR pulsed laser
 - 20 kHz
 - \(\leq \) ns pulse length
- Adjusted to CERN’s PCB
- 2.5 GHz Tektronix DPO
- Nitrogen for flushing
- Peltier for cooling down to \(-20^\circ C\)
- Keithely 2410 for bias voltage up to 1100V
70 MeV Proton samples
IV curve

- IV measurements taken by Rebecca Carney with IV/CV measurement setup at CERN
- Clearly increasing leakage current with fluence, as to be expected
70 MeV Proton samples
Waveforms

Electrons – 1e13 n$_{eq}$/cm2

Holes – 1e13 n$_{eq}$/cm2

Electrons – 5e14 n$_{eq}$/cm2

Holes – 5e14 n$_{eq}$/cm2
70 MeV Proton samples Waveforms

• Waveforms highlight summarized below
• Both n-side and p-side show clearly shows a gradient sign change for the 5×10^{14} n_{eq}/cm^2 sample.
• Most likely suggests SCSI
70 MeV Proton samples
Depletion voltage

- V_{fd} calculated with TCTana, same method as 300 MeV pion samples
- Together with waveforms, most likely type inversion occurs slightly above 1×10^{14} n$_{eq}$/cm2

V_{fd} calculation from CCE example
70 MeV Proton samples
Annealing study

- Annealing done at 60° C
- After 1e14:
 - Initially reverse followed by beneficial annealing
- After 5e14:
 - Initially beneficial annealing
 - After approx. 70 min at 60° C reverse annealing is dominating
- Analogous to DOFZ -> no compensation

<table>
<thead>
<tr>
<th>Annealing step</th>
<th>Time in oven (min)</th>
<th>Compensated time (min)</th>
<th>Total annealing time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>13.5</td>
<td>13.5</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>58</td>
<td>71.5</td>
</tr>
<tr>
<td>3</td>
<td>250</td>
<td>222</td>
<td>293.5</td>
</tr>
<tr>
<td>4</td>
<td>988</td>
<td>931.5</td>
<td>1225</td>
</tr>
</tbody>
</table>

Depletion voltage vs annealing time, MCz silicon 1E14 proton irradiation

Depletion voltage vs annealing time, MCz silicon 6E14 proton irradiation
300 MeV pion samples

IV curves

- **V_{fd} values used from results with IR laser**
- **I_{L2}** is I_{leak} at temperature T.
- **I_{L1}** is I_{leak} at temperature $T + \Delta T$.
- Used to calculate I_{leak} at different T

\[\frac{I_{L2}}{I_{L1}} \approx \exp \left[\left(\frac{3}{\eta T} + \frac{E_G}{\eta T E_T} \right) \Delta T \right], \quad (\eta=2, \ E_G=1.12\text{eV}, \ E_T=0.0259\text{eV}) \]
300 MeV pion samples
Waveforms (IR)

1×10^{13} n$_{eq}$/cm2

TCT Measurement @ T=+14 C

1×10^{14} n$_{eq}$/cm2

TCT Measurement @ T=+11 C

2.76×10^{14} n$_{eq}$/cm2

TCT Measurement @ T=+11 C

4.26×10^{14} n$_{eq}$/cm2

TCT Measurement @ T=+09 C
300 MeV pion samples
CCE and V_{fd}

• Results hint at increasing N_{eff} with increasing fluence
• Systematically too low V_{fd} for two lowest fluences, due to overshoot.
• Unsure of overshoot origin (only seen in low fluences and unirradiated MCz)
 • Any ideas?

Depletion voltage vs fluence
300 MeV Pion samples
Red Laser comparison (holes)

- Hints at possible SCSI or strong double junction forming between 1e14 n$_{eq}$/cm2 and 2.76e14 n$_{eq}$/cm2

1e13 n$_{eq}$/cm2

300 MeV Pion samples
Red Laser comparison (holes)

- Hints at possible SCSI or strong double junction forming between 1e14 n$_{eq}$/cm2 and 2.76e14 n$_{eq}$/cm2

1e14 n$_{eq}$/cm2

300 MeV Pion samples
Red Laser comparison (holes)

- Hints at possible SCSI or strong double junction forming between 1e14 n$_{eq}$/cm2 and 2.76e14 n$_{eq}$/cm2

4.26e14 n$_{eq}$/cm2

300 MeV Pion samples
Red Laser comparison (holes)

- Hints at possible SCSI or strong double junction forming between 1e14 n$_{eq}$/cm2 and 2.76e14 n$_{eq}$/cm2

4.26e14 n$_{eq}$/cm2

300 MeV Pion samples
Red Laser comparison (holes)

- Hints at possible SCSI or strong double junction forming between 1e14 n$_{eq}$/cm2 and 2.76e14 n$_{eq}$/cm2
300 MeV Pion samples
Red Laser comparison (electrons)

- No suggestion at SCSI from electron drift, rather seems to hint at a double junction

Data taken by Isidre Mateu at CERN
Conclusion

- n-in-n MCz still puzzling
- 70 MeV protons cause SCSI (like DOFZ, like reactor neutrons and 24 MeV protons in n-in-n MCz)
- 200 MeV pions looked somewhat ambiguous in literature
- 300 MeV pions looked even more ambiguous in our measurements:
 - red laser TCT data indicate SCSI or at least formation of a strong double junction
 - IR laser TCT data suffers from overshoot of slow moving charge (where from?) for low fluences, indicates rather no SCSI
- Outlook:
 - CV measurements on 300 MeV pion-irradiated diodes
 - annealing study
 - add more irradiations in relevant energy region:
 - slow down 800 MeV protons at LANCSE or pions at PSI?
 - more additive studies?