

TCT measurements of n-type MCz diodes after irradiation with 70 MeV protons and 300 MeV pions

08-06-2016 William Holmkvist Co-Authors: Daniel Muenstermann, Rebecca Carney, Christian Gallrapp and Karola Dette

Background and motivation

N-in-N MCz detectors show peculiar properties:

- No space charge sign inversion for 23 GeV protons
- Relatively stable V_{fd} for 200 MeV pions
- Additive space charge characteristics might enable the usage of cancelling effects to keep V_{fd} low/stable
 - Optimal N_{eff} stability at 2 parts proton and 1 part neutron radiation. Potential compensation of Neff for intermediate radii in ATLAS/CMS for n-in-n MCz.
- Results from: Kramberger et al., NIM A 612 (2010) 288 and NIMA A 609 (2009) 142

Background and motivation II

- From previous results we know that 24 MeV proton irradiated n-in-n MCz behave like FZ silicon, while 23 GeV proton irradiation do not.
 - LHC background energy spectrum peaks around 100-200 MeV
- 70 MeV proton irradiated samples acquired to investigate their behavior.
 - 1e13 n_{eq}/cm², 1e14 n_{eq}/cm², 5e14 n_{eq}/cm²
- 200 MeV pion literature results showing ambiguous behavior.
- 300 MeV pion irradiated samples acquired to see if the results can be clarified
 - 1e13 n_{eq}/cm^2 , 1e14 n_{eq}/cm^2 , 2.76e14 n_{eq}/cm^2 , 4.26e14 n_{eq}/cm^2

70 MeV proton samples

300 MeV pion samples

TCT+ setup at CERN

- Red Laser illumination possible • from top and bottom side of DUT
- 2.5 GHz Agilent Scope •
- Flushing with dry air •
- Computer controlled peltier cooling • down to -20° C

200Hz

Bias voltage up to 1000V •

Particulars TCT setup at Lancaster University

- IR pulsed laser
 - 20 kHz
 - ≤ ns pulse length
- Adjusted to CERN's PCB
- 2.5 GHz Tektronix DPO
- Nitrogen for flushing
- Peltier for cooling down to -20° C
- Keithely 2410 for bias voltage up to 1100V

70 MeV Proton samples IV curve

- IV measurements taken by Rebecca Carney with IV/CV measurement setup at CERN
- Clearly increasing leakage current with fluence, as to be expected

70 MeV Proton samples Waveforms

70 MeV Proton samples Waveforms

- Waveforms highlight summarized below
- Both n-side and p-side show clearly shows a gradient sign change for the 5e14 n_{eq}/cm2 sample.
- Most likely suggests SCSI

70 MeV Proton samples Depletion voltage

- V_{fd} calculated with TCTana, same method as 300 MeV pion samples
- Together with waveforms, most likely type inversion occurs slightly above 1e14 n_{eq}/cm²

70 MeV Proton samples Annealing study

- Annealing done at 60° C
- After 1e14:
 - Initially reverse followed by beneficial annealing
- After 5e14:
 - Initially beneficial annealing
 - After approx. 70 min at 60° C reverse annealing is dominating
- Analogous to DOFZ -> no compensation

Annealing	Time in oven	Compensated	Total annealing
step	(min)	time (min)	time (min)
1	20	13.5	13.5
2	70	58	71.5
3	250	222	293.5
4	988	931.5	1225

300 MeV pion samples IV curves

300 MeV pion samples CCE and V_{fd}

- Results hint at increasing N_{eff} with increasing fluence
- Systematically too low V_{fd} for two lowest fluences, due to overshoot.
- Unsure of overshoot origin (only seen in low fluences and unirradiated MCz)
 - Any ideas?

Depletion voltage vs fluence

300 MeV Pion samples Red Laser comparison (holes)

• Hints at possible SCSI or strong double junction forming between 1e14 n_{eq} /cm² and 2.76e14 n_{eq} /cm²

300 MeV Pion samples Red Laser comparison (electrons)

No suggestion at SCSI from electron drift, rather seems to hint at a double junction

Conclusion

- n-in-n MCz still puzzling
- 70 MeV protons cause SCSI (like DOFZ, like reactor neutrons and 24 MeV protons in n-in-n MCz)
- 200 MeV pions looked somewhat ambigous in literature
- 300 MeV pions looked even more ambigous in our measurements:
 - red laser TCT data indicate SCSI or at least formation of a strong double junction
 - IR laser TCT data suffers from overshoot of slow moving charge (where from?) for low fluences, indicates rather no SCSI
- Outlook:
 - CV measurements on 300 MeV pion-irradiated diodes
 - annealing study
 - add more irradiations in relevant energy region:
 - slow down 800 MeV protons at LANCSE or pions at PSI?
 - more additive studies?