TCT MEASUREMENTS AND ANALYSES OF PROTON IRRADIATED LGADS

Sofía Otero Ugobono^{1,2} M.Fernández^{1,3}, C. Gallrapp¹, I. Mateu Suau^{1,4}, M.Moll¹, M. Stricker¹, I.Vila³ With CNM-Barcelona and RD50 LGAD Teams

¹CERN ²Universidade de Santiago de Compostela ³IFCA - Universidad de Cantabria ⁴CIEMAT

WAFER CHARACTERISTICS **CNM RUN 7859**

- Multiplication layer dose: 1.8x10¹³ cm⁻²
 - Wafers I and 2.
 - Only one LGAD without JTE.
 - PIN diodes also available.
- Multiplication layer dose: 2.0×10^{13} cm⁻²

P-Well

JTE

- Wafers 3 and 4.
- PIN diodes also available.

Collector

Field_Plate 10µm, 0µm

2

IRRADIATION CAMPAIGN

Irradiation performed at the PS facility

- 24-GeV protons
- Sets of 4 sensors, formed by
 - I PIN + I LGAD from WI or W2
 - I PIN + I LGAD from W3 or W4

Fluences:

$$= 10^{12} I MeV n_{eq}/cm^{2}$$

= 10¹³ I MeV n_{eq}/cm²
= 10¹⁴ I MeV n_{eq}/cm²
= 10¹⁵ I MeV n_{eq}/cm²

Annealing: 80 min at 60°C

References

Hardness factor: $\kappa = 0.56$

3

Multiplication layer dose: • WI and W2: 1.8×10^{13} cm⁻²

• W3 and W4: 2.0×10^{13} cm⁻²

TCT MEASUREMENTS

- Picosecond-pulsed LASER (200 ps)
 - Red front and back (660 nm, 47.4 μW)
 - IR front and back (1064 nm, 29.5 μW)

HOMOGENEITY ANALYSIS

5

TCT - Red back @ -20°C, 100V

57.4

59.4

59.6

59.8

60.2

60

9

60.6

60.4

8.9

9.6

9.4

9.2

62.4

x [mm]

62.2

62

58.6

61.6

61.8

TCT - Red back @ -20°C, 100V

8

Sample: LGAD_7859_1.8_9_W1_F10-3

Mult. layer 1.8x10¹³cm⁻²

charge [pC]

TCT - Red front @ -20°C, 100V

Before irradiation

After irradiation

TCT - Red back @ -20°C, 100V

VOLTAGE SCANS

Mult. layer

1.8x10¹³cm⁻²

Ш

LGAD - TCT - Red front @ -20°C

PIN - TCT - Red front @ -20°C

Mult. layer

1.8x10¹³cm⁻²

LGAD - TCT - Red back @ -20°C

PIN - TCT - Red back @ -20°C

PIN - TCT - IR back @ -20°C

PIN - TCT - Red front @ -20°C

After irradiation

voltage [V]

Before irradiation

GAIN VALUES

- "Type-I Gain":
 - Ratio between the charge collected, after full depletion, in the LGAD and its respective PIN diode.
 - This ratio should be obtained between sensors from identical wafers.
 - If the samples were irradiated, in order to calculate the gain, the LGAD and the PIN must have been exposed to the same fluence.

Type-I gain values at 700 V

Multiplication layer doping	IR back			Red back			Red front		
	Before Irrad.*	After Irrad.		Before	After Irrad.		Before	After Irrad.	
		ϕ (n _{eq} /cm ²)		Irrad.*	ϕ (n _{eq} /cm ²)		Irrad.*	ϕ (n _{eq} /cm ²)	
1.8x10 ¹³ cm ⁻²	5.7	1012	6.6	6.2	1012	6.0	4.3	1012	4.3
		10 ¹³	5.3		10 ¹³	5.7		10 ¹³	4.7
		1014	3.1		1014	2.8		1014	2.3
		1015	1.1		10 ¹⁵	0.9		10 ¹⁵	1.0
2.0x10 ¹³ cm ⁻²		1012	31.5	21.4	1012	23.1	₩3 = 10.6 ₩4 = 12.9	1012	8.3
	W3 = 31.9	10 ¹³	24.6		10 ¹³	18.9		10 ¹³	15.3
	W4 = 25.7	1014	6.2		1014	7.7		1014	3.7
		10 ¹⁵	0.97		10 ¹⁵	0.97		10 ¹⁵	0.6

*The gain values before irradiation correspond to the mean between the type-1 gain values at 700 V of all the corresponding sensors.

GAIN VALUES

- "Type-2 Gain":
 - Ratio between the electrons injected and the holes created in the multiplication layer.

Type-2 gain values at 700 V

Multiplication layer	Before	After Irradiation - ϕ (n _{eq} /cm ²)					
doping	Irradiation*	I 0 ¹²	I 0 ¹³	I 0 ¹⁴	10 ¹⁵		
1.8x10 ¹³ cm ⁻²	7.4	7.7	6.9	3.0	Not possible to calculate		
2.0×10 ¹³ cm ⁻²	29.6	33.2	26.3	7.3	Not possible to calculate		

Type-I gain values with red back TCT at 700 V

Multiplication layer	Before	After Irradiation - ϕ (n _{eq} /cm ²)					
doping	Irradiation*	I0 ¹²	I 0 ¹³	I 0 ¹⁴	10 ¹⁵		
1.8x10 ¹³ cm ⁻²	6.2	6.0	5.7	2.8	0.9		
2.0×10 ¹³ cm ⁻²	21.4	23.1	18.9	7.7	0.97		

*The gain values before irradiation correspond to the mean between the gain values at 700 V of all the corresponding sensors.

THRESHOLD VOLTAGE

To actually have gain the multiplication layer must be depleted.

- The threshold voltage indicates as from which voltage the multiplication layer is depleted.
- The threshold voltage can be determined by red front TCT.

- According to Gregor's results* the threshold voltage decreases with fluence.
- The opposite effect was observed in the LGADs from CNM run 7859.
- Most plausible explanation: double junction effect due to hole trapping.

DOUBLE JUNCTION EFFECT

HOLETRAPPING

- Before irradiation there are no deep traps => the depletion region grows from the front.
- After irradiation trapping is significant.
- Excess holes + multiplication holes can get trapped and thus change the space charge.
- Because of the occupation probability of traps, the process is highly dependent on temperature
 - The lower the temperature, the longer charges remain trapped.

S. Otero Ugobono, TCT Measurements and Analyses of Proton Irradiated LGADs, 28th RD50 Workshop, Torino, Italy

26

S. Otero Ugobono, TCT Measurements and Analyses of Proton Irradiated LGADs, 28th RD50 Workshop, Torino, Italy

27

S. Otero Ugobono, TCT Measurements and Analyses of Proton Irradiated LGADs, 28th RD50 Workshop, Torino, Italy

29

CONCLUSIONS

- Homogeneous charge collection before and after irradiation.
- Charge collection and gain decrease after irradiation.
 - At a fluence of $10^{14} n_{eq}/cm^2$ the gain is
 - \approx 2 times smaller than before irradiation, for WI and W2,
 - \approx 4 times smaller than before irradiation, for W3 and W4.
 - At 10¹⁵ n_{eq}/cm² there is no difference in charge collection between PIN diodes and LGADs.
- The voltage required to deplete the multiplication layer increases with fluence, when the irradiation is with protons.
 - This is a direct consequence of the double junction effect caused by hole trapping.

THANKYOU

BACKUP SLIDES

TCT - Red back

PIN_7_WI_C9-3

Mult. layer

1.8x10¹³cm⁻²

Fluence 10¹⁴ n_{eq}/cm²

LGAD_4_W2_I3-I

time [ns]

-60

-40

time [ns]

Fluence $10^{14} n_{eq}/cm^2$

TCT - Red back

Mult. layer 2.0x10¹³cm⁻²

LGAD_7_W3_C2-3

TCT - Red front

Mult. layer 2.0x10¹³cm⁻²

PIN_4_W3_I8-I

LGAD_7_W3_C2-3

Fluence

 $10^{14} n_{eq}/cm^2$

time [ns]

Fluence $10^{14} n_{eq}/cm^2$ TCT - Red front

Voltage range: 10 V to 1000 V, 10 V steps

Mult. layer

1.8x10¹³cm⁻²

LGAD_4_W2_I3-I

TCT - Red front

Mult. layer 1.8x10¹³cm⁻²

Voltage range:

10V to 1000V,

IOV steps

PIN_7_WI_C9-3

TCT - Red front

Mult. layer 2.0x10¹³cm⁻²

PIN_4_W3_I8-I

