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Outline

- Two Photon Absorption

- Application to depleted MAPS (HVCMOSv3) characterization

- Preliminary: Irradiated (7x10"™ n_/cm®) detector

TPA-TCT is a characterization technique developed within the RD50 collaboration
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Two photon absorption basics (l) €
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The probability of a two photon absorption is increased by (1/‘cpfp)=105 forthe 4
same average power by using a mode-locked pulsed laser




Position z ( . m)

S TPA basics (ll) LS
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TPA laser facility satker

- Measurements conducted at the Singular o Zaroim Ok
Laser Facility of the UPV (Bilbao, Spain). " deinvesigacion
http://www.ehu.es/SGlker/es/laser/ [ (Insidethe [ optical bench

- Very flexible and tunable laser system
(intensity, A, pulse duration...)

- Access granted via RD50 collaboration.

- See backup for full specs
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In this study:
A=1300 nm, 12 nm bandwidth, At=240 fs
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Introduction to HYCMOS

implemented in low resistivity CMOS technology,

= HYCMOS sensors are partially depleted MAPS ]
able to withstand voltages up to 100 V.

= The deep n-well (DNW) is both the substrate for —

shallow transistors and the collecting diode. N
|. Peric doi:10.1088/1748-0221/7/08/c08002

= Due to the low resistivity and maximum voltage granted by the technology, the
maximum depletion depth is of the order of 10 um <« Tough for SPA methods

* For this experiment, laser illumination from the edge of the detector.

Objectlve E | '
’“ua;%'i\ HVCMOS
: B on PCB
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HVCMOS
on PCB




TPA-TCT: Subset of waveforms during edge scan

20160203_2342_HVCMOSv3_unirrad_80V_baseline_substrated.XYscan
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TPA-TCT: Charge in 10 ns, -80 V, unirradiated HYCMOSv3

3
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FWHM=120 X 25 um?
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Marcos Fernandez - 28" RD50 Workshop — June 2016, Torino (ltaly)



F

TPA-TCT: Charge in 1 ns, -80 V, unirradiated HYCMOSV3
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Rectangular structure showing up
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SPA-TCT: Charge in 1 ns, -80 V, unirradiated HYCMOSV3

TCT+ CERN-SSD -80V 2015-03-27_00-20-17_crgg. HYCMOS_eTCT _unirrad.txt
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Substructure is not visible with Single Photon TCT
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TPA-TCT: Collection time t__ (x,y)
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Time lapse between the beginning and end of the signal.
Collection time in this plot limited to 20 ns 12

Marcos Fernandez - 28" RD50 Workshop — June 2016, Torino (Italy)



SPA-TCT: Collection time t__,(x,y)
- TCT+ CERN-SSD -80V

& = NN W kA Ut XD

129.05

SPA-TCT spots a transition between drift and diffusion regions,
not the implant
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TPA-TCT: Drift/diffusion
discrimination
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At the implant double
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field.

14



> | F

3D scan of HVYCMOS detector using TPA-TCT ®

Laser at 1300 nm, 240 fs, pJ pulse energy
XY scan of sensor edge (Ax=5 pm,Ay=1 um)
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Identification of the DNW boundaries allows to set a reference for the
calculation of depths 15



Calculation of depletion depth

Showing projection along the dashed line —
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Calculation of depletion depth
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TPA-TCT: depletion width and resistivity

Depletion width [mm]
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TPA-TCT: Implant depth (along Z)
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Collection time of signals shows implant depth~100 pm
This measurement is not possible with Single Photon Absorption SPA-TC'II'9



First look at
TPA-TCT on

7X10" neqlcm2

Unfortunately, during the installation of the PCB on the vertical platfrom, |
touched the edge of the detector

Leakage current increased from 80 YA (70V) to 620 pA (50 V)
We measured anyway
The following slide should be considered as informative only

Measurements on irradiated HYCMOS will be performed during next access to
TPA-facility in September
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Conclusions

=2 New technique TPA-TCT, developed within RD50 collaboration, benefits of 1
order magnitude better spatial resolution than SPA-TCT.

=» Localized charge carrier generation: High-resolution 3D mapping of the
charge collecting junction.

=» First distinct determination of the deep n-well on HV-CMOS devices and
precise determination of its sensitive volume.

=2 TPA-TCT specially adapted for testing small size feature detectors.

=» Strong focus leads to high divergence. Motifs close to surface are best for

TPA-TCT

=2 HVCMOS results published as part of VCI 2016 proceedings:
http://www.sciencedirect.com/science/article/pii/S0168900216304569

=2 Request RD50 project coordinated with RD50's HYCMOS one to provide
access to laser facility

Thanks to the CERN bondlab for (re-)wirebonding of some of the detectors presented in this work 22
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Some other TPA-TCT presentations

F. Rogelio et al, Two Photon Absorption and carrier generation
In semiconductors

https://indico.cern.ch/event/334251/contributions/780784/

l. Vila et al, A novel Transient Current Technique based on the
Two Photon Absorption (TPA) process

https://indico.cern.ch/event/334251/contributions/780782/

l. Vila et al, Investigation on the radiation resistance of HV-
CMOS and pin diodes using a Transient Current Technique
based on the Two-Photon-AbsortionProcess

https://indico.cern.ch/event/452766/contributions/1117347/
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Laser characterization techniques

SPA-TCT Red O ir

Employing short penetration depth laser (red for
Si), all carriers deposited in few pum from surface
Allows to study drift of one kind of carriers

No “vertical” spatial resolution

1 photon=1 e-h pair

SPA: Single Photon Absorption
TCT: Transient Current Technique

SPA-TCT Infrared

Employing long penetration laser (infrared for Si)
Homogeneous distribution along “Rayleigh length”
Similar to MIPs, though different dE/dx

Incidence can be from top, bottom or edge
Lateral spatial resolution

1 photon=1 e-h pair

Two Photon Absorption (TPA-TCT)

It has been used to test SEE in chips,

First time used to test bulk radiation detectors
Point-like energy deposition — 3D spatial resolution
2 photons=1 e-h pain

Transient Current Techniques

Applicable to both pad/segmented detectors
Simple readout 2%
DAQ directly on digital scope



2. Setup and facility description

Fig. |1| shows the schematic setup of the TPA-
TCT experiment. Femtosecond laser pulses are
generated by a commercial Ti:Sapphire oscillator-
regenerative amplifier system (Coherent Mantis-
Legend, 1 kHz, 4.0 mJ, 30 fs pulses at 800 nm). A
fraction of the amplifier output is used to pump an
optical parametric amplifier (OPA) producing tun-
able radiation. The experiments were carried out

at a wavelength of 1300 nm. In order to avoid tem-
poral stretching of the laser pulses due to the prop-
agation inside the detector, the group delay disper-
sion is minimized using bandpass filter (Thorlabs,
FB1300-12) reducing the bandwidth to 12 nm. The
duration of the resultant pulses (243 fs, see Fig
was measured with a custom made second order in-
tensity autocorrelator (IA). A variable neutral den-
sity filter is used to control the pulse energy at the
detector in the range 10 pJ-1 nJ. Laser intensity
is monitored and recorded with a Ge photodiode
(PD: Thorlabs, Det50B) simultaneously with the
detector signal. IR pulses are reflected in the sur-
face of an uncoated fused silica window and focused
onto the detector, which is mounted in a high pre-
cision three axis translation stage (Thorlabs, PT3-
Z8), with a 100 x objective (Mitutoyo, M Plan Apo
SL) giving rise to a beam waist of 1 pm in linear
regime. Location of the beam spot on the detec-
tor is achieved by imaging the sample surface on
a CMOS camera together with the reflection of a
cw 625nm reference laser (RL) spatially overlapped
ultrashort pulse beam. The signals from the detec-

The laser facility

0sC

BS S
AMP n 0[] / OBI
< OPA { IR

SSA R — |10
& :

Figure 1: Schematic representation of the TPA-TCT setup.
OSC: Ti:Sapphire oscillator; AMP: Ti:Sapphire regenerative
amplifier; BS: beam sphtter; OPA: Optical parametric am-
plifier; IF: Interferential filter; IA: Intensity autocorrelator;
VNDF: Variable neutral density filter; 5: Shutter; PD: Ge
photodiode; FSW: Fused silica wedge; OBJ: X100 Objec-
tive; L: f 100 mm lens; CMOS: CMOS camera; RL: Ref-
erence laser; DUT: Device under test; TS: 3D translation
stage; DO: Digital oscilloscope. Colored lines are the laser
beams. Dotted lines are the signals from the detector and
reference photodiode. Dashed lines are device controls.
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Signal Amplitude (A.U.)

Two Photon Absorption signatures

Evidence of TPA: pure quadratic dependence between collected charge

In a diode and laser power
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HVCMOS in harsh radiat
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Figure 6. Left: Time resolved transient current in the center of the depletion width, and 30 pm below, shown
for two different fluences. The beginning of the pulse has been artificially moved to t=0. Right: Running
charge (accumulated charge as a function of integration time) for an unirradiated detector (black lines) and
irradiated (red). After irradiation charge is accumulated only by drift. For both plots, detector bias was
—80V at T=—20 °C.
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Figure 7. Left: collected charge (in 5 ns, T=-20 °C, —80 V bias) profiles for different fluences. Right:
Collected charge (in 5 ns, integrated over 90 um depth. T=—20 °C) of irradiated detectors versus bias voltage
referred to the collected charge of the unirradiated sample. Note the overlap of the data for the 1 x 10'® and
25 10'® samples.
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Figure 9. Left: Measured depletion depth calculated as FWHM of charge profiles. Right: calculated
effective doping concentration versus fluence.
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