

TowardanOpenResourcesUsingServices

Modeling impacts of emission reduction measures on air quality, health, crop and climate forcing in Southeast Asia

Prof. N. T. Kim Oanh Dr. Didin Agustian Permadi Asian Institute of Technology

Highlights

- About atmospheric "modelization"
- Modeling air quality, climate forcing and impacts in Southeast Asia by AIT
- AIT planned activities within TORUS projects

Atmospheric modeling

- Global models
 - General circulation models (GCMs)
 - Global climate models: GCMs + CTM (e.g. GHGs, black carbon, etc.)
- Regional and urban scales
 - Meteorology models for weather research and to drive air quality models
 - Air quality modeling for estimation of ambient air concentrations
- Integrated modeling framework: GCMs + CTM + impact models (air quality, health, ecosystem, etc.)

Source: NASA website

Air Quality Modeling

- Air quality model
 - Input: Emission and Meteorology
 - Output: 3D conc. of air pollutants (hindcast, nowcast, forecast)

Global

Regional

- Use of AQ model results
 - − Pollutant conc. → current impacts on health, crops, etc.
 - Scenarios of emission → impacts of emission reduction measures
 - Scenarios of future climate → affect emission and dispersion → effects on air quality

Development of co-control strategies, e.g. for SLCPs

Integrated air quality and climate modeling: interaction between air quality and climate

AIT activities: Air Quality Modeling for Southeast Asia

TowardanOpenResourcesUsingServices

SEA modeling domains

Emission: black carbon in SEA

Scenario 1: Business as usual (BAU2030)

- Simple regression statistical analysis → 7-10 years historical activity data
- Emission projected to 2030
- EFs used were similar to BY2007

Scenario 2: Emission reduction (RED2030)

- Measures in 4 sectors: on-road transport, residential, industry, biomass OB
- Implemented for Thailand and Indonesia
- Other countries follow RCP8.5 scenario

WRF-CHIMERE output: BC and PM_{2.5}

Health effects: premature deaths

Premature mortality (BAU2030- RED2030)	Indonesia	Thailand
Avoided mortality per 100,000 pop.	49	36
Shindell et al. (2011)	74	68

TowardanOpenResourcesUsingServices

BC Direct Radiative Forcing in Different Emission Scenarios

Annual average BC radiative forcing (W/m²)

Ozone impact on crops

Townender Openflie sources Using Services

TORUS planned activities at AIT

- Update SEA emission inventory data for 2015
- Use Cloud Computing system to run and handle SEA modeling data
- On-line coupled meteorology-chemistry simulation to get climate output (temp., rainfall)
- Model evaluation using satellite data and wireless sensor monitoring data

Wireless sensor monitoring at AIT

- Monitor haze in Northern Thailand
- Monitor smoke of rice straw burning smoke in Central Thailand

Location Aware Sensing System (LASS) of PM_{2.5} sensor at AIT

Sensors were donated by Academia Sinica, Taiwan

TowardanOpenResourcesUsingServices

Thank you for your attention