
Overview of High Performance Computing

S. F. Schifano

University of Ferrara and INFN-Ferrara

Distributed Computing Architectures and
Environmental Science Applications

June 6-10, 2016

Ferrara, Italy

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 1 / 37

Outline

Overview of high-performance architectures

1 Evolution of processor architectures

2 Multi-core architectures

3 Many-core architectures

the one million dollar question
. . . which is the best computing system to use today ?

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 2 / 37

Background: Let me introduce myself

I’m a computer scientist

I have been involved in several projects to develop computing systems
optimized for computational physics:

I APEmille and apeNEXT: LQCD-machines

I AMchip: pattern matching processor, installed at CDF

I Janus: FPGA-based system for spin-glass simulations

I QPACE: Cell-based machine, mainly LQCD, 1st TOP-GREEN 500
in Nov.’09 and July’10

I AuroraScience: multi-core based machine

I Janus2: 2nd generation of FPGA-based system for spin-glass
simulations

I COKA: Computing on Knights Architectures

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 3 / 37

APE, Janus and QPACE

APEmille, apeNEXT Janus, Janus2 QPACE

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 4 / 37

A “modern” CPU architecture: my point of view !

. . . YES . . . (the core of) a modern CPU is still based on the 1950 Von Neumann model !!

J. Backus
. . . thus programming is basically planning and detailing the enormous traffic of words through
the von Neumann bottleneck, and much of that traffic concerns not significant data itself, but
where to find it.

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 5 / 37

CPU performances

At beginning, CPU performances have heavily relied on hardware:

clock frequency

hw supports to optimized memory time access:

I one or more levels of caches,
I reorder-buffer (ROB)
I . . .

hw supports to increase ILP:

I brach-predictors,
I out-of-order execution,
I . . .

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 6 / 37

Hardware Evolution: Moore’s Law

Gordon Moore – co-founder of Intel – Electronics Magazine 1965:

Moore’s Law
Number of devices/chip doubles every 18 months !

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 7 / 37

Hardware Evolution: Dennard Scaling

Moore’s Law
... 2X number of transistors on a chip every 1.5 years ...

but it’s Deannard’s law1 that made them useful:

Dennard’s Law
as transistors get smaller their power density stays constant, so that the
power use stays in proportion with area: both voltage and current scale
(downward) with length.

Roughly, . . . decreasing transistor feature-size by λ:

number of transistors increase by λ2

clock-speed increase by λ

Energy comsumption does not change !!

1Dennard et. al IEEE JSSC 1974
S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 8 / 37

Hardware Evolution: Dennard’s Law is Over !

Dennard’s scaling ignore the
leakage current and threshold
voltage

these created a Power Wall
limiting processor frequency
to ≈ 4 GHz since 2006.

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 9 / 37

The Multi-core processors era begins !

all large core: multi-core Intel x86 CPUs

many small core: NVIDIA GPUs accelerators

all small cores: MIC architectures, Intel Xeon Phi accellerator

mixed large and small cores: Cell, AMD-Fusion, NVIDIA-Denver

assembly more CPUs in a single silicon device 4

great impact on application performance and design 8

move challenge to exploit high-performance computing from HW to SW 8

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 10 / 37

“Conventional” Multi-Core CPU Architectures

4-8 . . . 22 cores, 1 shared L3-cache

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 11 / 37

“Conventional” CPU Architectures
Main features:

8-22 (and soon more) cores

frequency ≈ 3 GHz

3 levels of caches, 2 within a core and 1 shared

support for SIMD execution: AVX 256-bits

e.g.: Xeon E5-2680 Sandybridge: 691.2/345.6 GFlops SP/DP

Programming issues:

core parallelism

data parallelism

cache optimizations

Non Uniform Memory Architecture (NUMA)

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 12 / 37

Performances Issues
c number of cores

SIMD instructions on 256-bit operands:
each vector register can pack n = 4(8) double (single) precision
numbers

each core can execute two operations per clock-cycle:
one add and one mul

P = f × 2× n × c

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 13 / 37

Numa SMP Multi-socket Multi-core Systems

Symmetric Multi-processor Architecture (SMP)

Non Uniform Memory Architecture (NUMA)

issue on allocation of data to memory

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 14 / 37

Accelerator: Is this a really new concept ?

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 15 / 37

Accelerator: today it look likes much better !

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 16 / 37

NVIDIA GPU Architecture Evolution

Intel Xeon NVIDIA K80 AMD S9150

processor codename E5-2630 v3 GK210 Hawaii XT
#physical-cores 8 13 x 2 44
#logical-cores 16 2496 x 2 2816
nominal clock Freq. (GHz) 2.1 0.562 0.900
Nominal GFLOPS (DP) 268.625 935 x 2 2530
Max Boosted clock Freq. (GHz) 2.6 0.875 N/A
Boosted GFLOPS (DP) 331.56 1455 x 2 N/A
Max Memory (GB) 768 12 x 2 16
Mem Bandwidth (GB/s) 59 240 x 2 320
ECC YES YES YES

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 17 / 37

The Sausage Machine Model
A GPU is like a sausage machine:

. . . no input-meat . . . no output-sausage !!

. . . it produces output-results if you provide enough input-data !!

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 18 / 37

Are accellerators good sausage machines ?
FPS-164 and VAX (1976):

Floating Point: F = 11 Mflop/s, IO Rate: B = 44 MB/s

Ratio of flops to bytes of data movement: R = 0.25 Flops / Byte

Host-device latency: O(1) clock-cycle

Nvidia Kepler K20 and PciE (2012):

Floating Point: F = 1170 Gflop/s (DP), IO Rate: B = 8 GB/s

Ratio of flops to bytes of data movement: R = 146.25 Flops / Byte

Host-device latency: O(10− 100) clock-cycles

Flop/s are cheap, so are provisioned in excess,

data needs to be re-used and processed several times by the FPUs,

smart programming techniques to hide data movement latency, e.g.
recompute data instead of access memory.

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 19 / 37

Performance Evaluation: Amdhal’s Law

How much can I accelerate my application ?

Amdahl’s Law roughly states:

Suppose a car is traveling between two cities 60 miles apart, and
has already spent one hour traveling half the distance at 30 mph.

No matter how fast you drive the last half, it is impossible to achieve
90 mph average before reaching the second city.

Since it has already taken you 1 hour and you only have a distance
of 60 miles total,

going infinitely fast you would only achieve 60 mph.

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 20 / 37

Accelerator and the Amdahl’s Law

Amdahl’s Law
The effective speedup of an accelerated program is limited by the time
needed for the host fraction of the program.

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 21 / 37

Accelerator Issues: the Amdahl’s law
Let assume that P is the fraction of code accelerated, and N is the improving
factor, plotting the speed-up as function of N:

even if we accelerate the 3/4 of our code, by large values of N the maximum
speedup we can achieve is limited to 4 !!!

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 22 / 37

Accelerator Issues: Host-Device Latency

Anonymous

. . . bandwidth problems can be cured with money.
Latency problems are harder because the speed of light is fixed -
you can’t bribe Nature.

Moving data between Host and GPU is limited by bandwidth and latency:

T (n) = l + n/B

accelerator processor clock period is O(1)ns

PciE latency is O(1)µs

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 23 / 37

GPU Programming Model

execution has an hierarchical structure:

I a grid of blocks
I each block is a 1-2-3 D array of threads

host launches a grid of thread-blocks

a CUDA kernel (program executed on the device) is executed by an
array of threads

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 24 / 37

Vector sum example
/ / device code
__global__ void vadd (double ∗ A , double ∗ B , double ∗ C) {

int i = threadIdx .x + blockIdx .x ∗ blockDim .x ;
C [i] = A [i] + B [i] ;

}

int main () {
double A_h [N] , B_h [N] , C_h [N] ;
double ∗ A_d , ∗ B_d , ∗ C_d ;

srand48 () ;
vinit (double ∗A , double ∗B , double ∗C) ;

/ / a l l o c a t e and copy data on the device
cudaMalloc ((void∗∗) &A_d) ; cudaMalloc ((void∗∗) &B_d) ; cudaMalloc ((void∗∗) &C_d) ;
cudaMemcpy (A_d , A_h , N , H2D) ; cudaMemcpy (B_d , B_h , N , H2D) ; cudaMemcpy (C_d , C_h , N , H2D) ;

dim3 dimBlock (64 , 1) ; / / s i ze o f thread−block
dim3 dimGrid (N /64 , 1) ; / / s i ze o f block−g r i d

/ / run kerne l
vadd <<< dimGrid , dimBlock >>> (A ,B ,C) ;

cudaThreadSynchronize () ; / / wa i t u n t i l ke rne l te rmina tes ! ! ! !

/ / copy r e s u l t s back to host
cudaMemcpy (C_h , C_d , N , D2H) ;

/ / feee memory device
cudaFree (A_d) ; cudaFree (B_d) ; cudaFree (C_d) ;

}

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 25 / 37

GPU Programming Issues

host-to-device latency:
Amdhal’s law

memory access latency:
O(103) processor cycles, run many threads to hide memory-latency

high-data parallelism:
many threads-per-block and many blocks-per-grid

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 26 / 37

So ... what’s better ? Multi-core CPUs or Accelerators

in other words ... what’s better to plow a ground ?

It depends on what do we need. As rule of thumb:

low-latency and reasonable throughput: left

high-througput and reasonable-latency: right

Better if you can use both !!! May be hard to program and get good efficiency !

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 27 / 37

Where we are going ?

. . . towards a convergence between CPU and GPU architectures

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 28 / 37

First attempt to merge GPU and CPU concepts
MIC: Many Integrated Core Architecture

Knights Ferry: development board

Knights Corners: production board

Intel Xeon-Phi: commercial board

Knights Landing next generation

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 29 / 37

Intel MIC Systems: Knights Corners

PCIe interface

Knights Corners: 61 x86 core @ 1.2 GHz

each core has 32KB L1 instruction cache,
32KB L1 data cache, and 256KB L2 cache

512-bit SIMD unit: 16 SP, 8 DP

multithreading: 4 threads / core

8 MB L3 shared coherent cache

4-6 GB GDDR5

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 30 / 37

MIC Architectures

cores based on Pentium architecures

≈ 60 cores

in-order architecture

512-bit SIMD instructions
S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 31 / 37

MIC Programming Model

native:
icc -mmic pippo.c -o pippo

offload:
using approriate pragmas to mark code that will be transparently
executed onto the MIC board

Programming is well integrated with many languages:

openMP

TBB

Cilk

. . .

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 32 / 37

Parallelism management

offload a code that spanws threads

use openMP

for (t = 0; t < NTHREAD ; t++) {
pthread_create(&threads [t] , NULL , threadFunc , (void ∗) &tData [t]) ;

}

for (t = 0; t < NTHREAD ; t++) {
pthread_join (threads [t] , NULL) ;

}

#pragma omp p a r a l l e l p r i v a t e (t i d)
{
tid = omp_get_thread_num () ;
theadFunc ((void ∗) &targv [tid]) ;

}

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 33 / 37

Example: vector sum
#define N 1717

void __attribute__ ((target (mic))) vadd (double ∗A , double ∗B , double ∗C)

void vinit (double ∗A , double ∗B , double ∗C) {
int i ;
for (i=0; i<N ; i++){
A [i] = drand48 () ; B [i] = drand48 () ; C [i]= 0 . 0 ;

}
}

int main () {
double A [N] , B [N] , C [N] ;
srand48 () ;
vinit (double ∗A , double ∗B , double ∗C) ;
. . . .
#pragma offload target (mic : 0) in (A ,B :lenght (N)) inout (C :lenght (N))
{
vadd (A ,B ,C) ;

}
. . . .

}

void vadd (double ∗A , double ∗B , double ∗C) {
#ifdef __MIC__

int i ;
for (i=0; i<N ; i++)
C [i] = A [i] + B [i] ;

#else
fprint (stderr , "This code is running on the host\n") ;

#endif
}

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 34 / 37

MIC Programming Issues

core parallelism:

I keep all 60 cores (1 reserver for OS) busy
I runs 2-3 (up-to) 4 threads/core is necessary to hide memory

latency

vector parallelism:

I enable data-parallelism
I enable use of 512-bit vector instructions

Amdhal’s law:

I transfer time between host and MIC-board not negligible
I hide transfer time overlapping computation and processing

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 35 / 37

Intel Knights Landing

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 36 / 37

Conclusions
Multi-core architectures have a big inpact on programming.

Efficient programming requires to exploit all features of hardware
systems:

I core parallelism

I data parallelism

I cache optimizations

I NUMA (Non Uniform Memory Architecture) system

Accelerators are not a panacea:

I good for desktop-applications

I hard to scale on large clusters

the one million dollar question
So . . . which is the best computing system to use ?

S. F. Schifano (Univ. and INFN of Ferrara) Overview of High Performance Computing June 6-10, 2016 37 / 37

