

TowardanOpenResourcesUsingServices

Multivariate analysis – R examples Astrid JOURDAN – Mathematics department - EISTI

Computer Architecture and Environmental Science Application Ferrara 6-10 june 2016

Reminder of some datamining concepts

The curse of dimensionality

Principal analysis components

Practice with R

Title of the workshop Title of your presentation

Basic data mining objective

Reminder

Process of a stud

Tasks

Process for learning Predictive methods High dimension rse of dimensionality Dimension reduction

> Objective Inertia Solution Results

TowardanOpenResourcesusingServices

Overfitting and generalization

The goal of supervised learning is to find a model f such as $Y=f(X_1,...,X_p)+\varepsilon$, where ε is an error

Reminder

Process of a study

Overfitting

Process for learning Predictive methods **High dimension** Curse of dimensionality Dimension reduction

> PCA Objective Inertia Solution Results

Process for learning

Reminder

Tasks Overfitting Process for learning Predictive methods High dimension rse of dimensionality Dimension reduction PCA

bjective Inertia Solution

6

Predictive methods

Reminder

variables → target	1 quantitative	<i>n</i> quantitative	1 categorial	<i>n</i> categorial	Mixed
1 quantitative	Linear regression, decision tree, SVR	Multiple linear regression, PLS regression, decision tree, neural networks, SVR	ANOVA, decision tree, SVR	ANOVA, decision tree, neural networks, SVR	ANCOAV, decision tree, neural networks, SVR
1 categorial	Discriminant analysis, Logistic regression, decision tree, neural networks SVM	Multiple discriminant analysis, logistic regression, PLS logistic regression, decision tree, neural networks SVM	Discriminant analysis, logistic regression, decision tree, neural networks SVM	Multiple discriminant analysis, logistic regression, decision tree, neural networks SVM	Logistic regression, decision tree, neural networks SVM

Grid with 2 levels = 2^d points (e.g. d= $20 \Rightarrow 33554432$ points) k levels = k^d points (e.g. k=5 and d= $10 \Rightarrow 9765625$ points)

Dimensionality reduction

Dimensionality reduction

A large number of variables (features):

- increases overfitting
- contains redundant variables
- increases the training time and requires a large amount of memory and computation power

Selection of a subset of relevant features for a model

Feature selection algorithms remove :

✓ redundant variables (correlated, mutual information,...)

✓ irrelevant variables (measure of accuracy, AIC, BIC, MSE...) (risk of overfitting)

Reminder Process of a study Tasks Overfitting Process for learning Predictive methods

High dimension Curse of dimensionality

Dimension reduction PCA Objective Inertia Solution

Feature extraction

Creation of new variables from the original variables

✓ Linear (e.g. PCA) or nonlinear transformation (e.g. kernel PCA)

 ✓ Criteria to measure the « loss of information » (variance, pairwise distances ,...)

Principal component analysis

Information

The information is the inertia of the data set

V is the covariance matrix (Inertia = sum of variances).

$$I = \frac{1}{n} \sum_{i=1}^{n} \left\| e_i - g \right\|^2$$

PCA

Inertia

	Рор. (Т)	Life exp.	Nb. child
Argentina	41050	75,87	2,19
Armenia	3099	74,44	1,77

Distance between Argentina and Armenia $= (41050-3099)^{2} + (75,87-74,44)^{2} + (2,19-1,77)^{2} = 1440278405$

≅(41050-3099)²

Reduced and centered variables :

Principal component analyse

Construction of the principal axes

- The 1st principal axis (u₁) catches a maximum variance (inertia).
- The 2^{nd} principal axis (u₂) catches the maximum of the remaining variance and is orthogonal to the 1^{st} axis
- Each succeeding component is built in the same way until the last axis $(u_{\rm p})$

Reminder Process of a study Tasks Overfitting Process for learning Predictive methods High dimension Curse of dimensionality Dimension reduction

PCA

Objective Inertia Solution

Results

Solution

The principal axes are the eigenvectors associated to the eigenvalues $\lambda_1, ..., \lambda_p$ of the covariance matrix V such that $\lambda_1 > ... > \lambda_p$.

- > Inertia of the data projected on u_k is λ_k
- > Inertia of the data projected on $\langle u_1, ..., u_k \rangle$ is $\lambda_1 + ... + \lambda_k$
- > Total inertia is $I=\lambda_1+...+\lambda_p$

The principal components are the components of the data projected on the principal axis. **III PCA is sensitive to outliers III**

X₂

Results of PCA

- PCA is a method to reduce the dimension
- PCA is also a method to describe and understand the data

Co-funded by the Erasmus+ Programme of the European Union

Reminder Process of a study Tasks Overfitting Process for learning Predictive methods High dimension Curse of dimensionality Dimension reduction

PCA

Objective Inertia Solution Results

Now practice with R!

Use Mozilla Firefox to connect to HUPI

http://ecoles.hupi.io/

user : torus@eisti.eu Password : Lz4eA8b7

torus@eisti.eu	۵
•••••	
Se souvenir de moi	Connexion
_	connexion
Droblàma da connexian 2	Inscription

			Q 🕹 train_torus 🗸
BIENVENUE ! ci devrait se trouver soit une description du service, soit les indicateurs les plus pertinents.	🔅 Interactif	۶ Link	_
s'agirait d'avoir, juste après le login, toutes les informations utiles en un clin d'œil, tout en laissant la navigation accessible j		>	T
Par exemple, sur la colonne de gauche, on peut consulter des informations plus précises mais moins utiles au quotidien.	Notebook	Terminal	i
	¢\$	0	
	Studio	Explore	
	1	æ	
	Support	Monitoring	
	λ	>	
	Terminal2	Terminal3	
	>		
	Terminal4		

Select a Terminal

login : train_torus Password : Lz4eA8b7

TowardanOpenResourcesUsingServices

Co-funded by the Erasmus+ Programme of the European Union