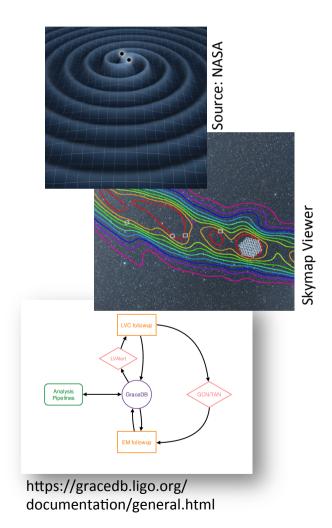


The LVC EM follow-up program

G. Stratta On behalf of the LIGO Scientific collaboration and Virgo collaboration



11th Workshop on Science with the New generation of High Energy Gamma-ray Experiments Pisa 18-21 October 2016

Outline

- EM counterparts of GW sources: what do we expect and why are important
- Past and current LVC EM follow-up programs
- EM follow-up campaign of GW150914
- Future plans

High Frequency (10 – 10000 Hz) Gravitational Wave detectors

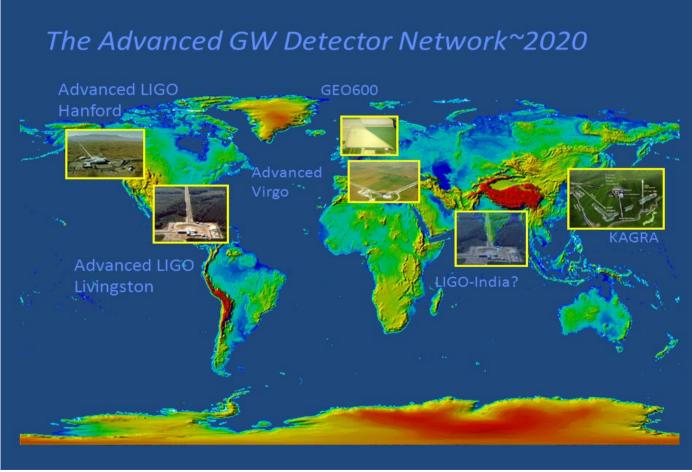
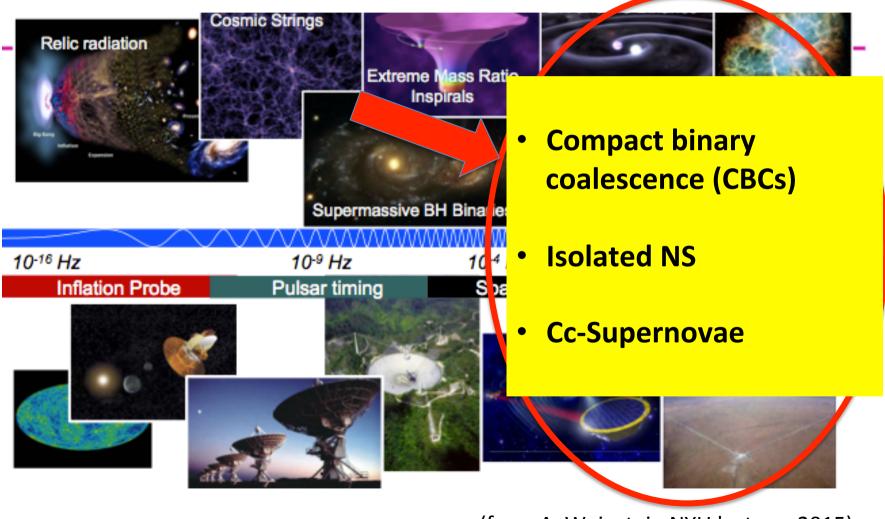
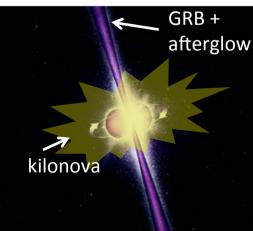



Image credit: Tarun Souradeep

GW sources

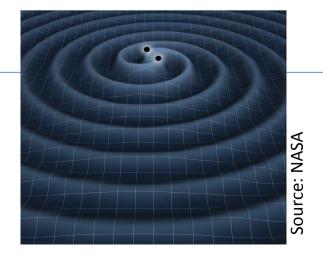
(from A. Weinstein NYU lecture, 2015)

EM counterparts of most promising GW sources (CBCs)


*stellar-mass

black hole (i.e.

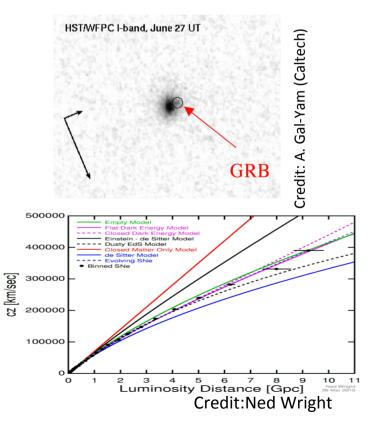
<100 M_o)


NS-NS or NS-BH*

- "Short" γ-ray bursts (GRB, <2 s) (e.g. Eichler et al. 1989, Berger2014)
- MW Afterglows: X-rays (<1 day)/opt (<1 week/ radio(<1 month)
- → well established emission but collimated →only a fraction (1-cos θ) of NS-NS/NS-BH (10°→1%!)
- <u>"macronova"</u>: opt/NIR bands, T0+1-10 days (e.g. Lattimer & Schramm 1976)
- Late radio emission: T0+1 month (e.g. Piran+2013)
- X-ray emission: if NS remnant is formed (e.g. Siegel & Ciolfi 2015)
- MW Off-axis afterglows: T+hours/days

BH-BH*

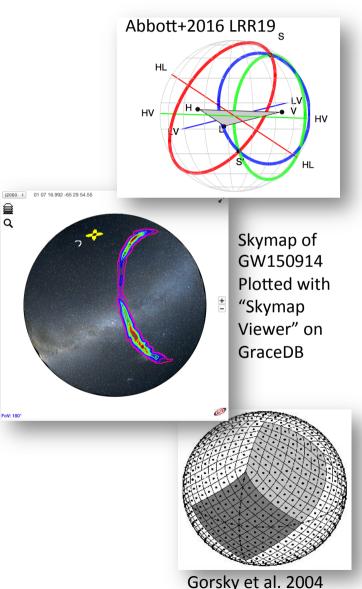
- No obvious EM counterpart is expected from such systems since no presence of matter is expected around BHBH
- Recent works however propose some possible scenarios where some material may be bound to the system and emit EM radiation (e.g. remnant disk, Perna et al. 2016; third body tidal disruption, Seto& Muto2011)



Why searching for EM counterparts?

Some examples:

- To gain a more complete phenomenological pictures of astrophysical sources:
 - GW: masses, spins, orientations
 - EM: particle acceleration and emission processes
- For the case of sGRB we will confirm their progenitor nature and possibly distinguish between NS-NS and NS-BH
- Host galaxy identification (if extra-galactic):
 - ISM properties -> formation history of GW source, etc.
 - Independent measure of distance from spectral line systems
- Measuring cosmological z from optical spectra and luminosity distance from GW for large sample of CBC→ constraints on cosmological parameters



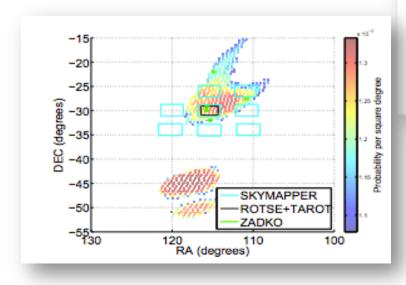
Joint GW+EM detection: 2 ways

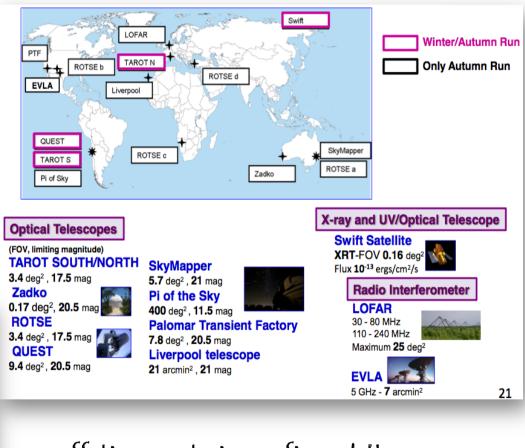
- Triggers from EM sources → offline GW archival data analysis using EM source position and trigger time as priors for signal search and parameter estimation (e.g. SN, GRB, etc.)
- Triggers from GW events → EM follow-up observations (and archival searches) using GW event time and rough localization (e.g. macronova, off-axis afterglows, NS spindown emission, etc.)

- GW source sky localizations are provided by a network of interferometers via triangulation
- Large sky areas are identified depending on the number of GW detectors
 E.g. with 2 detectors: 100-1000 deg2, with 5 detectors (>2022) ~10 deg2 or less
- Rather than a pair of sky coordinates +uncertainties, GW sources are localized with sky probability maps
 - The whole sky is divided in equal area pixels of 0.16 deg2 and to each pixel the probability of finding the GW source is assigned
- Sky probability densities are currently computed by several pipelines based on different algorithms with increasing computational costs

Past LVC GW-EM follow-up program

- First GW-triggered EM followup campaigns during initial LIGO and Virgo science runs:
 - Dec 2009 Jan 2010
 - Sept 2010 Oct 2010
- Despite no significant GW event was detected, 8 GW candidates* were selected among unmodeled bursts and CBCs signals (FAR<1-0.25 day⁻¹)
- GW candidate inferred sky locations were used to centrally plan follow-up observations


\cap	(Center Locati	Table 5 ions of All Fi	ields Observ	red		
GW Triggei	Telescope	R.A.	Decl.	R.A.	Decl.	R.A.	Decl.
G3821	QUEST	104.89	-27.94	133.88	-5.24	227.61	-64.26
CWB1	TAROT	207.21	-48.80				
G4202	QUEST	89.34	-0.70	86.33	-9.78	89.34	-5.24
CWB2	QUEST	81.00	-32.49	75.63	-50.65	91.23	-41.57
G19377	ROTSE-c	115.56	-30.00				
	SkyMapper	115.43	-30.03	120.01	-29.91	110.78	-29.92
		115.40	-34.00	115.39	-25.99	110.94	-25.93
		110.58	-33.91	120.22	-33.90		
	TAROT	115.40	-30.00				
	Zadko	110.98	-27.53	114.75	-22.05	115.25	-32.07
		115.80	-29.98	115.85	-29.22		
G20190	ROTSE-abcd	333.25	18.03				
	TAROT	333.33	18.00				
	Zadko	322.49	12.17	323.37	-0.82	329.77	18.18
		330.17	17.74	333.96	19.23		
	QUEST	336.29	8.50	334.49	10.63	331.61	17.57
G21852	ROTSE-b	11.04	41.61				
	PTF	11.39	41.62	55.80	-19.12	52.20	-19.12
		56.93	-21.37	39.42	-7.87	52.25	-28.12
\ <i>I</i>		55.24	-16.87	51.15	-25.87	34.38	-32.62
G23004	ROTSE-bcd	61.97	-20.91				
	Liverpool	61.11	-2.20				
	Pi of the Sky	Various					

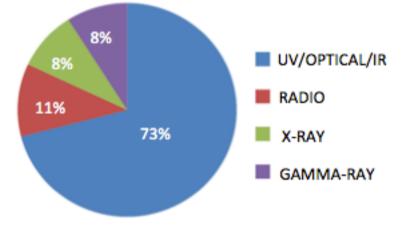

Aasi+2014 ApJSS, 211,7

Past LVC GW-EM follow-up program

Tiles were assigned to individual facilities

10 optical and radio groundbased facilities plus Swift high energy satellite were involved at that time

* off-line analysis confirmed the nonastrophysical origin of GW candidates


Aasi+2014 ApJSS, 211,7

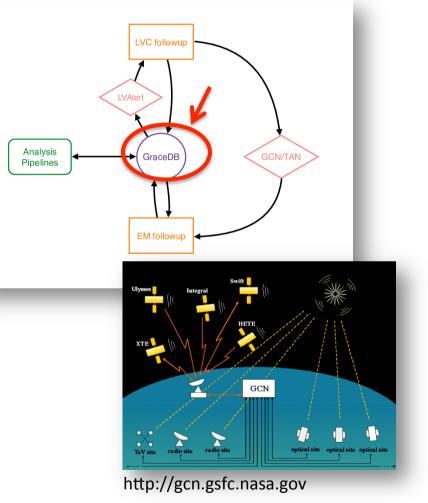
Current LVC GW-EM follow-up program

Today there are about 83 teams that have signed the LVC MoU!

~170 instruments (satellites/world-wide ground-based) covering the full spectrum from radio to very high-energy gamma-rays!

Astronomical institutions, agencies and large/small groups of astronomers from 19 countries

Credit: Branchesi

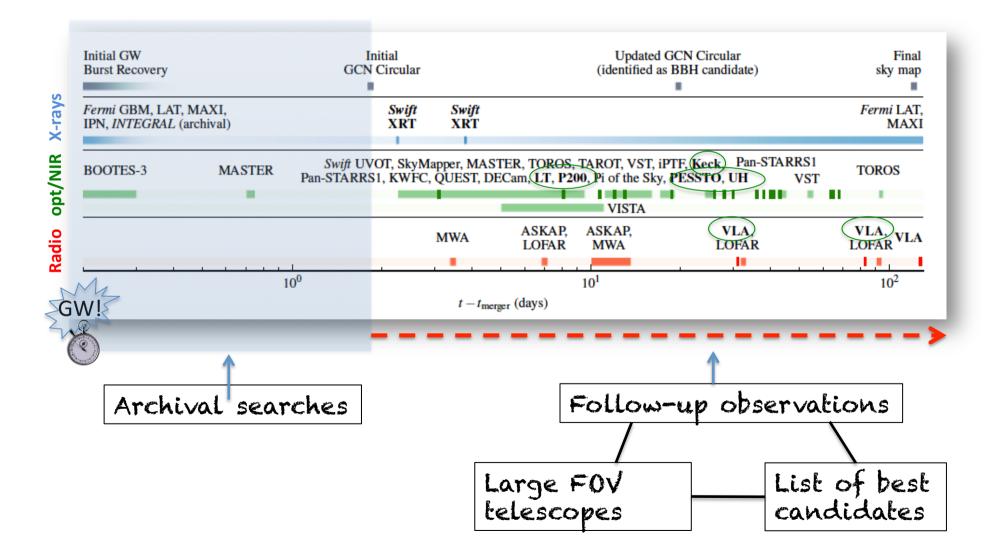

Some of them https://gw-astronomy.org/wiki/LV_EM/PublicParticipatingGroups

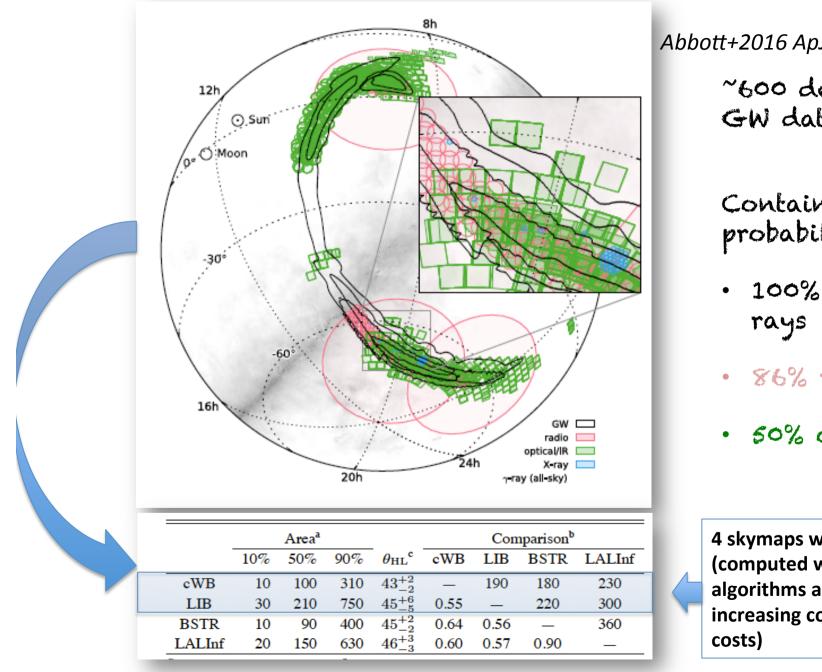
Current LVC GW-EM follow-up program

https://gracedb.ligo.org/documentation/general.html

Rather than centrally planning assignments of tiles to each facility:

- Skymaps of GW events are distributed to MoU partners with the Gamma-ray Coordinates Network (GCN*) system:
 - 1. machine-readable Notices
 - 2. Short bullettins/circulars with descriptions of results and observations
- A common EM bulletin board has being created to coordinate observations by:
 - Announcing planned or performed observations providing sky coordinates and wavelength
- The main interface between low-latency GW data analysis and EM follow-up observations is the Gravitational wave Candidate Data Base (GraceDB) webpage


*GCN are currently restricted to MoU parnters until the event has been published


Localization and Broadband Follow-up of GW150914 (*Abbott+2016 ApJL 826,13*)

On 14-09-2015 an interesting GW event was detected		h	ttps:	://gr	ace	edb.li	go.or	g/event	ts/G	6184098
SNR=23.4			Gracel	DB — G	ravit	ational V	Vave Can	didate Ever	nt Dat	abase
FAR<0.3/yr	HOME	SEARCH	CREATE	REPORT	S RS	S LATEST	OPTIONS	DOCUMENTATION	A	UTHENTICATED AS: GIULIA STRATTA
\rightarrow below predefined threshold	Basic I	ıfo					GPS Time	•		UTC -
of 1/month	UID G184098	Labels H1OK L1OK	Group Burst	Pipeline CWB	Search AllSky	Instruments H1,L1	Event Tir 1126259462.39		Links Data	Submitted 2015-09-14 09:53:51 UTC
→ skymaps sent via GCN	Analysi	s-Specific	Attribut	es	-					
together with the link	5	start_time	1126259	9461		central_freq	123.8285		false_alarr	m_rate
to the GraceDB page to 63	sta	art_time_ns	7500000	000		bandwidth	51.8386		ligo_axi	s_ra 130.9219
		duration	2.477e-	02		amplitude	1.410e+01		ligo_axis	_dec 4.4808
teams	F	eak_time	None			snr	23.4521		ligo_an	gle None
	pe	ak_time_ns	None			confidence			ligo_angl	e_sig None

EM Observations (RA, Dec, λ , Tstart, etc.)	Skymap Viewer	
Which MOU Group provides this report?	Skymap Viewer A sky attas for understanding LIGO-Virgo skymaps. Help here, and skymaps here. If you do not see the big dark sky map, look below and widen your horovare. Zoom with the + and - at the right of the sky.	
RA (decimal degrees)	Show Builetin Board	
Dec (decimal degrees)	LIGO-Virgo Skymaps ?	~
RAwidth (decimal degrees)	C This skymap is from GraceDB	
Decwidth (decimal degrees)	candidate d'144098. 50% wara = 746.1 sq. deg 50% wara = 746.1 sq. deg	
StartTime	Show Weighted Galaxies for table).	
On source exposure (seconds)	Time and Place 🛛	ŧ
Report as text	Universal time 2015-00-1470-50-04 E urgetska Show Sky Sun = 200 and 10 and	
Submit EMBB Observation Report	Catalog Sources 🖗	Ø

Localization and Broadband Follow-up of GW150914 (Abbott+2016 ApJL 826,13)

50% and 90% confidence levels of the initially distributed GW skymaps

Abbott+2016 ApJL 826,13 ~600 deg² from GW data Contained probability: 100% gamma-

- 86% radio
- 50% optical

4 skymaps were released (computed with different algorithms and increasing computational

									Abbott+2016	
Facility/	Dendi	Dead	75	Area (dop ²)			Probabilit BSTR ^d			
Instrument	Band ^a	Depth ^b	Time	(deg ²)	CWB	LIB	BSIK.	LALINT	moor complete to crude in the	
			Gam	ima-ray	ray					gamma-ray down to 10 ⁻⁷ erg cm ⁻² s ⁻¹
Fermi LAT	20 MeV- 300 GeV	1.7×10^{-9}	(every 3 hr)	-	100	100	100	100	V reve equerare, complete down to	
Fermi GBM	8 keV-40 MeV	$0.7-5 \times 10^{-7}$ (0.1-1 MeV)	(archival)	-	100	100	100	100	X-rays coverage complete down to 10 ⁻⁹ erg cm ⁻² s ⁻¹ (MAXI),	
INTEGRAL	75 keV-1 MeV	1.3×10^{-7}	(archival)	_	100	100	100	100		
IPN	15 keV-10 MeV	1×10^{-7}	(archival)	_	100	100	100	100	relatively sparse at fainter flux with the	
			х	-ray					Swift XRT	
MAXI/GSC	2-20 keV	1×10^{-9}	(archival)	17900	95	89	92	84		
Swift XRT	0.3-10 keV	5×10^{-13} (gal.)	2.3, 1, 1	0.6	0.03	0.18	0.04	0.05	Ex: X-rays from sGRB @70 Mpc:	
		$2-4 \times 10^{-12}$ (LMC)	3.4, 1, 1	4.1	1.2	1.9	0.16	0.26		
			Op	oticale					10 ⁻⁹ -10 ⁻⁷ cgs at 11hr	
DECam	i, z	i < 22.5, z < 21.5	3.9, 5, 22	100	38	14	14	11	Fermi-GBM sub-threshold search →	
iPTF	R	R < 20.4	3.1, 3, 1	130	2.8	2.5	0.0	0.2		
KWFC	í	i < 18.8	3.4, 1, 1	24	0.0	1.2	0.0	0.1	weak signal of 1 sec 0.4 s after GW15014	
MASTER	С	< 19.9	-1.1, 7, 7	710	50	36	55	50	fluence(1 keV-10 MeV) = 2.4×10^{-7} erg cm ⁻²	
Pan-STARRS1 La Silla–	i	i < 19.2 - 20.8 r < 21	3.2, 21, 42	430	28 23	29 16	2.0 6.2	4.2 5.7		
QUEST	g,r	r < 21	3.8, 5, 0.1	80	23	10	0.2	5.7	FAR 4.79 × 10 ⁻⁴ Hz, FAP 0.0022	
SkyMapper	i, v	i < 19.1, v < 17.1	2.4, 2, 3	30	9.1	7.9	1.5	1.9		
Swift UVOT	u	u < 19.8 (gal.)	2.3, 1, 1	3	0.7	1.0	0.1	0.1	(Connaughton et al. arXiv:1602.03920)	
	u	u < 18.8 (LMC)	3.4, 1, 1							
TAROT	c	R < 18	2.8, 5, 14	30	15	3.5	1.6	1.9		
TOROS VST@ESO	C r	r < 21 r < 22.4	2.5, 7, 90 2.9, 6, 50	0.6 90	0.03 29	0.0 10	0.0 14	0.0 10	INTEGRAL → no signal but stringent	
1316130	,	1 22.4	2.9, 0, 50	50	23	10	14	10	upper limit	
			Near	Infrared					upper mint	
VISTA@ESO	Y, J, K_S	J < 20.7	4.8, 1, 7	70	15	6.4	10	8.0	(Savchenko et al. 2016 ApJL, 820)	
			R	adio					AGILE → no signal (Tavani+2016)	
ASKAP	863.5 MHz	5-15 mJy	7.5, 2, 6	270	82	28	44	27		
LOFAR	145 MHz	12.5 mJy	6.8, 3, 90	100	27	1.3	0.0	0.1	Credit: Branchesi	
MWA	118 MHz	200 mJy	3.5, 2, 8	2800	97	72	86	86	Credit: Branchesi	

Facility/ Instrument	Band ^a	Depth ^b	Time ^c	Area (deg ²)	Cor cWB		Probabili BSTR ^d	ty (%) LALInf	Optical facilities tiled together about 900 deg ² with a contained probability
			Gan	nma-ray					of over 50% of the initial sky map and
Fermi LAT	20 MeV- 300 GeV	1.7×10^{-9}	(every 3 hr)	-	100	100	100	100	slightly less of the refined sky map
Fermi GBM	$8\mathrm{keV}{-40\mathrm{MeV}}$	$0.7-5 \times 10^{-7}$ (0.1-1 MeV)	(archival)	-	100	100	100	100	
INTEGRAL IPN	75 keV–1 MeV 15 keV–10 MeV	1.3×10^{-7} 1×10^{-7}	(archival) (archival)		100 100	100 100	100 100	100 100	The depth varies widely among the different facilities
			2	(-ray					unerent lacinties
MAXI/GSC Swift XRT	2–20 keV 0.3–10 keV	1×10^{-9} 5×10^{-13} (gal.) 2-4 × 10 ⁻¹² (LMC)	(archival) 2.3, 1, 1 3.4, 1, 1	17900 0.6 4.1	95 0.03 1.2	89 0.18 1.9	92 0.04 0.16	84 0.05 0.26	DES and VST deepest surveys 22.5
			Oţ	ptical®				/	Ex: Macronova@70 Mpc : $P \approx 17.24$ mag at 1.2 weaks
DECam iPTF	i, z R	i < 22.5, z < 21.5 R < 20.4	3.9, 5, 22 3.1, 3, 1	100 130	38 2.8	14 2.5	14 0.0	11 0.2	R ~ 17-24 mag at 1-2 weeks
KWFC	1	i < 18.8	3.4, 1, 1	24	0.0	1.2	0.0	0.1	Spectroscopic Follow-up
MASTER	c	< 19.9	-1.1, 7, 7	710	50	36	55	50	Instrument No. of Candidates Discovery Survey Epochs $\lambda(\hat{A}) = \Delta \lambda^{i}(\hat{A})$
Pan-STARRS1	i	i < 19.2 - 20.8	3.2, 21, 42	430	28	29	2.0	4.2	KeckII+DEIMOS 8 iPTF 1 4650 - 9600 3.5
La Silla– QUEST	g,r	r < 21	3.8, 5, 0.1	80	23	16	6.2	5.7	LT+SPRAT 1 Pan-STARRS1 1 4500 - 7500 18 NTT+EFOSC2 10 QUEST/Pan-STARRS1 3650 - 9250 18 P200+DBSP 1 Pan-STARRS1 1 3200 - 9000 4 - 8
SkyMapper	i, v	i < 19.1, v < 17.1	2.4, 2, 3	30	9.1	7.9	1.5	1.9	P200+DBSP 1 Pan-STARRS1 1 3200 - 9000 4 - 8 UH2.2m+SNIFS 9 Pan-STARRS1 1 3200 - 10000 4 - 6
Swift UVOT	u	u < 19.8 (gal.)	2.3, 1, 1	3	0.7	1.0	0.1	0.1	
TABOT	u C	u < 18.8 (LMC)	3.4, 1, 1	20	1.6	2.5	16	1.0	Abbott+2016 ApJL 826,13
TAROT TOROS	c c	R < 18 r < 21	2.8, 5, 14 2.5, 7, 90	30 0.6	15 0.03	3.5 0.0	1.6 0.0	1.9 0.0	
VST@ESO	r	r < 22.4	2.9, 6, 50	90	29	10	14	10	Deep photometry, broadband
			Near	Infrared					observations and spectroscopy \rightarrow
VISTA@ESO	Y, J, K_S	J < 20.7	4.8, 1, 7	70	15	6.4	10	8.0	candidates are normal population type
			R	tadio					la type II SNe, dwarf novae, active
ASKAP LOFAR MWA	863.5 MHz 145 MHz 118 MHz	5–15 mJy 12.5 mJy 200 mJy	7.5, 2, 6 6.8, 3, 90 3.5, 2, 8	270 100 2800	82 27 97	28 1.3 72	44 0.0 86	27 0.1 86	galactic nuclei, all unrelated to GW150914 Credit: Branchesi

Facility/ Instrument	Band ^a	Depth ^b	Time ^c	Area (deg ²)	Co cWB		Probability BSTR ^d		Abbott+2016
inou oniscite	Dillo	Debu	1000	(orb)	en b	Land	DOTIN	Lorizon	
			Gan	ima-ray					
Fermi LAT	20 MeV- 300 GeV	1.7×10^{-9}	(every	-	100	100	100	100	Radio coverage at low
Fermi GBM	8 keV-40 MeV	$0.7 - 5 \times 10^{-7}$	3 hr) (archival)	_	100	100	100	100	frequencies extensive, with the
INTEGRAL	75 keV-1 MeV	(0.1–1 MeV) 1.3 × 10 ⁻⁷	(archival)	_	100	100	100	100	contained probability of about 90%
IPN	15 keV-10 MeV	1×10^{-7}	(archival)	-	100	100	100	100	down to 5-200 mJy flux densities
			X	-ray					,
MAXI/GSC	2-20 keV	1×10^{-9}	(archival)	17900	95	89	92	84	
Swift XRT	0.3-10 keV	5×10^{-13} (gal.)	2.3, 1, 1	0.6	0.03	0.18	0.04	0.05	Radio Follow-up
		$2-4 \times 10^{-12}$ (LMC)	3.4, 1, 1	4.1	1.2	1.9	0.16	0.26	Instrument No. of Candidates Discovery Survey Epochs Freq. (GHz) Lim. Flax ^b (uJ
									VLA 1 iPTF 3 6 ≲ 50
			Oţ	oticale					
DECam	i, z	i < 22.5, z < 21.5	3.9, 5, 22	100	38	14	14	11	
iPTF	R	R < 20.4	3.1, 3, 1	130	2.8	2.5	0.0	0.2	· · · · · · · · · · · · · · · · · · ·
KWFC	ź	i < 18.8	3.4, 1, 1	24	0.0	1.2	0.0	0.1	At high-frequency (GHz)
MASTER	С	< 19.9	-1.1, 7, 7	710	50	36	55	50	At high-frequency (Ghz)
Pan-STARRS1	i	i < 19.2 - 20.8	3.2, 21, 42	430	28	29	2.0	4.2	the narrow-field VLA followed
La Silla-	g, r	r < 21	3.8, 5, 0.1	80	23	16	6.2	5.7	
QUEST	<i>i</i>	(< 10.1 m < 17.1	24.2.2	30	9.1	7.9	1.5	1.9	localized transients down to
SkyMapper Swift UVOT	i,v u	i < 19.1, v < 17.1 u < 19.8 (gal.)	2.4, 2, 3 2.3, 1, 1	30	0.7	1.0	0.1	0.1	
awyi 0401	u u	u < 18.8 (LMC) u < 18.8 (LMC)	3.4, 1, 1	,		1.0	0.1	0.1	µJy flux densities
TAROT	č	R < 18	2.8, 5, 14	30	15	3.5	1.6	1.9	1.7
TOROS	č	r < 21	2.5, 7, 90	0.6	0.03	0.0	0.0	0.0	
VST@ESO	r	r < 22.4	2.9, 6, 50	90	29	10	14	10	
			Near	Infrared					BNS@70Mpc: 0.01-10 mJy (months)
VISTA@ESO	Y, J, K_S	J < 20.7	4.8, 1, 7	70	15	6.4	10	8.0	
				edia.					
LOVAD	000.000			adio		- 20			
ASKAP LOFAR	863.5 MHz 145 MHz	5-15 mJy	7.5, 2, 6	270 100	82	28 1.3	44 0.0	27	
MWA	145 MHz 118 MHz	12.5 mJy 200 mJy	6.8, 3, 90 3.5, 2, 8	2800	97	72	86	0.1 86	Credit: Branchesi
MINA .	110 //11/2	2001109	2.2, 2, 0	2000	31	16	00	00	

EM follow-up program in O1

Three elected and to CC groups of action and with all any attend and hilling	Event	GW150914	GW151226	LVT151012
 Three alerts sent to 65 groups of astronomers with observational capabilities 	Signal-to-noise ratio	23.7	13.0	9.7
 All the info from public GCNs: 	False alarm rate FAR/yr^{-1}	$< 6.0 imes 10^{-7}$	$< 6.0 imes 10^{-7}$	0.37
hpp://gcn.gsfc.nasa.gov/gcn3_archive.html	p-value	$7.5 imes 10^{-8}$	$7.5 imes 10^{-8}$	0.045
	Significance	$> 5.3\sigma$	$> 5.3 \sigma$	1.7σ
GW150914 25 teams of astronomers Update Update Updates:	Primary mass $m_1^{\text{source}}/M_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}
BBH Final FAR and	Secondary mass $m_2^{\text{source}}/M_{\odot}$	$29.1^{+3.7}_{-4.4}$	$7.5^{+2.3}_{-2.3}$	13^{+4}_{-5}
2 days Initial sky maps 19 days nature 4 months sky map	$\frac{\text{Chirp mass}}{\mathscr{M}^{\text{source}}/\text{M}_{\odot}}$	$28.1^{+1.8}_{-1.5}$	$8.9_{-0.3}^{+0.3}$	$15.1^{+1.4}_{-1.1}$
	Total mass $M^{\text{source}}/M_{\odot}$	$65.3^{+4.1}_{-3.4}$	$21.8^{+5.9}_{-1.7}$	37^{+13}_{-4}
	Effective inspiral spin Xeff	$-0.06\substack{+0.14\\-0.14}$	$0.21\substack{+0.20 \\ -0.10}$	$0.0\substack{+0.3\\-0.2}$
G194575 Alert! Update	Final mass $M_{\rm f}^{\rm source}/{\rm M}_{\odot}$	$62.3^{+3.7}_{-3.1}$	$20.8^{+6.1}_{-1.7}$	35^{+14}_{-4}
6.5 hrs Initial sky maps 29 days Noise event	Final spin a _f	$0.68^{+0.05}_{-0.06}$	$0.74^{+0.06}_{-0.06}$	$0.66^{+0.09}_{-0.10}$
Rett	Radiated energy $E_{rad}/(M_{\odot}c^2)$	$3.0^{+0.5}_{-0.4}$	$1.0\substack{+0.1\\-0.2}$	$1.5^{+0.3}_{-0.4}$
	Peak luminosity $\ell_{\text{peak}}/(\text{erg s}^{-1})$	$3.6^{+0.5}_{-0.4} \times 10^{56}$	$3.3^{+0.8}_{-1.6} \times 10^{56}$	$3.1^{+0.8}_{-1.8} \times 10^{56}$
GW151226 31 teams of astronomers Updates: Updates: Updates:	Luminosity distance $D_{\rm L}/{\rm Mpc}$	$420\substack{+150 \\ -180}$	$440\substack{+180 \\ -190}$	1000^{+500}_{-500}
	Source redshift z	$0.09^{+0.03}_{-0.04}$	$0.09^{+0.03}_{-0.04}$	$0.20^{+0.09}_{-0.09}$
1.6 days Initial sky maps 15/17 days Final FAR 23 days Final sky map	Sky localization $\Delta\Omega/deg^2$	230	850	1600
	"Binary Blac	k Hole N		in the

Credit: Branchesi

"Binary Black Hole Mergers in the first Advanced LIGO Observing Run" Abbott+1606.04856

Future program for O2

- Next run (O2) starting in November
- Future alerts will provide <u>within</u> <u>minutes:</u>
 - Date & time of the GW event
 - skymap (only the preferred skymap at time of sending)

If CBC:

- source distance
- − signal type (e.g. if a NS is present
 →EM-bright flag)

If burst:

- duration, central frequency (?)
- Virgo will significantly improve the sky localization (estimates for GW 150914 indicates more than a factor of 10!)

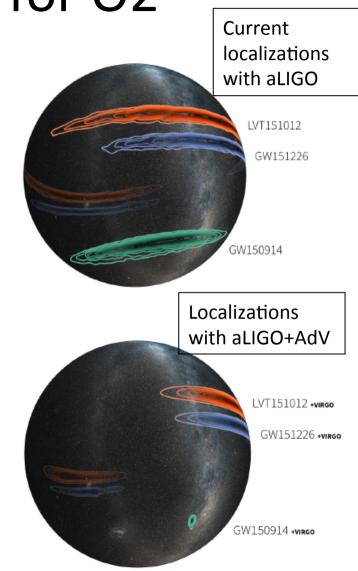
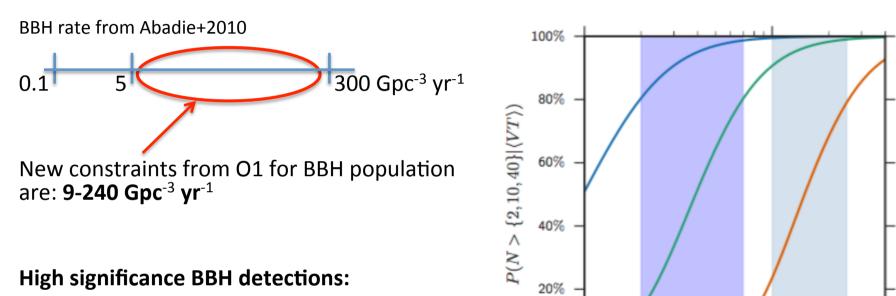



Image Credit: LIGO/L.Singer/A. Mellinger

Future program for O2

- O2:
 - ~90% probability to see >2 BBH
 - ~50% to see >10 BBH
- 03:
 - ~90% of probability to see > 10 BBH
 - ~60% of probability to see >40 BBH

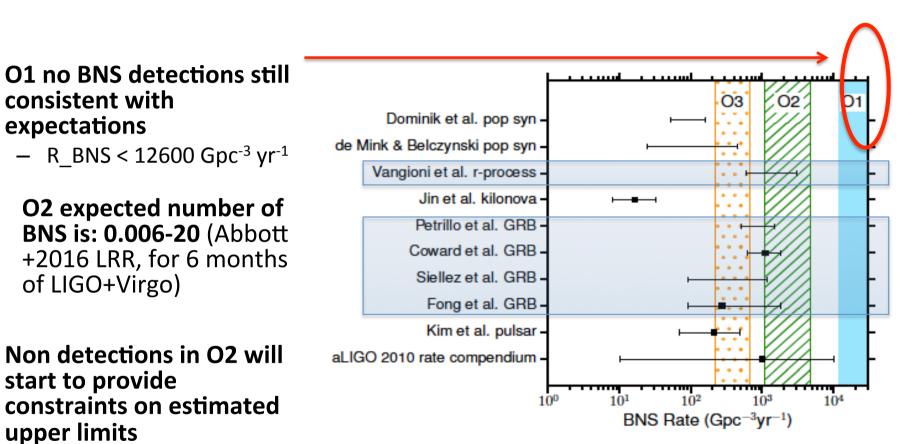
"BBH Mergers in the first aLIGO observing run" Abbott+2016, ApJL in press

02

0%

1

03


10

 $\langle VT \rangle / \langle VT \rangle_{O1}$

Future program for O2

٠

•

"Upper limits on the rates of BNS and NSBH from aLIGO first observing run" Abbott+2016 arXiv: 1607.07456v1

Summary

- EM counterparts are expected from gamma-rays to radio, and are fundamental to obtain a complete phenomenological picture of several GW sources
- EM follow-up observations are challenging due to the poor localization of GW detectors and uncertainties on expected emission
- Current EM follow-up program has being successfully tested in O1 managing optimal coordinations of >30 astronomical facilities
- For O2, sky probability maps will be released in tens of min, with additional information as e.g. source distance, EM expected brightness flag – if CBC -
- The join of Virgo to the network will significantly improve sky localizations enhancing the probability to find the EM counterparts!

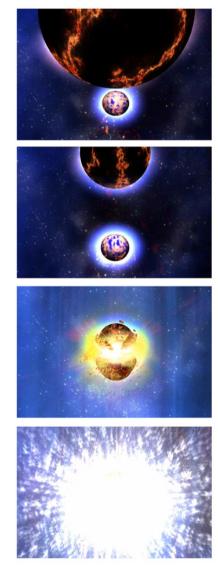
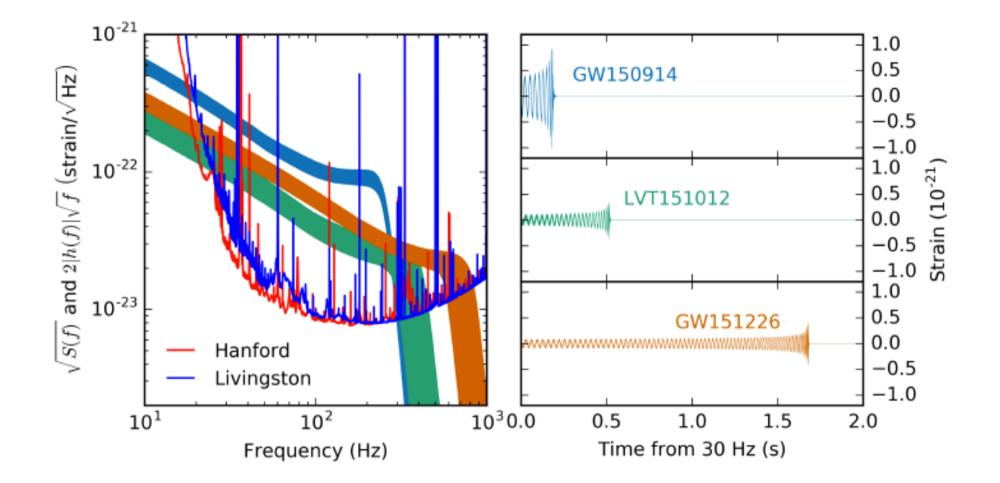
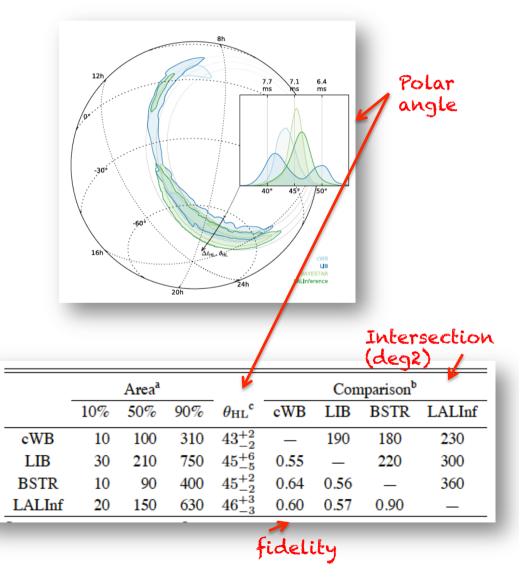



Image Credit: NASA / Dana Berry

Extra slides

Event	GW150914	GW151226	LVT151012
Signal-to-noise ratio ρ	23.7	13.0	9.7
False alarm rate FAR/yr^{-1}	$< 6.0 imes 10^{-7}$	$< 6.0 imes 10^{-7}$	0.37
p-value	$7.5 imes 10^{-8}$	$7.5 imes10^{-8}$	0.045
Significance	$> 5.3\sigma$	$> 5.3 \sigma$	1.7σ
Primary mass $m_1^{\text{source}}/M_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}
Secondary mass $m_2^{\text{source}}/M_{\odot}$	$29.1^{+3.7}_{-4.4}$	$7.5^{+2.3}_{-2.3}$	13^{+4}_{-5}
Chirp mass $\mathscr{M}^{\text{source}}/M_{\odot}$	$28.1^{+1.8}_{-1.5}$	$8.9^{+0.3}_{-0.3}$	$15.1^{+1.4}_{-1.1}$
Total mass $M^{\text{source}}/M_{\odot}$	$65.3^{+4.1}_{-3.4}$	$21.8^{+5.9}_{-1.7}$	37^{+13}_{-4}
Effective inspiral spin Xeff	$-0.06\substack{+0.14\\-0.14}$	$0.21\substack{+0.20 \\ -0.10}$	$0.0\substack{+0.3\\-0.2}$
Final mass $M_{\rm f}^{\rm source}/{ m M}_{\odot}$	$62.3^{+3.7}_{-3.1}$	$20.8^{+6.1}_{-1.7}$	35^{+14}_{-4}
Final spin a _f	$0.68^{+0.05}_{-0.06}$	$0.74_{-0.06}^{+0.06}$	$0.66^{+0.09}_{-0.10}$
Radiated energy $E_{rad}/(M_{\odot}c^2)$	$3.0^{+0.5}_{-0.4}$	$1.0\substack{+0.1 \\ -0.2}$	$1.5\substack{+0.3 \\ -0.4}$
Peak luminosity $\ell_{peak}/(erg s^{-1})$	$3.6^{+0.5}_{-0.4} \times 10^{56}$	$3.3^{+0.8}_{-1.6} \times 10^{56}$	$3.1^{+0.8}_{-1.8} \times 10^{56}$
Luminosity distance D _L /Mpc	$420\substack{+150 \\ -180}$	$440\substack{+180 \\ -190}$	1000^{+500}_{-500}
Source redshift z	$0.09^{+0.03}_{-0.04}$	$0.09^{+0.03}_{-0.04}$	$0.20\substack{+0.09\\-0.09}$
Sky localization $\Delta\Omega/deg^2$	230	850	1600

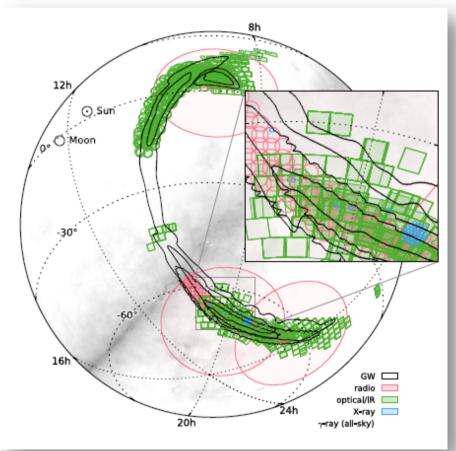
1606.04856


Localization and Broadband Follow-up of GW150914 (Abbott+2016 ApJL 826,13)

 > aLIGO ER8: 17-08-2015 → 17-09-2015
 aLIGO O1 start: 18-09-2015

- > On 14-09-2015 cWB detected a GW event, SNR=23.4, FAR<0.3/ yr → below predefined threshold of 1/month → OK!
- T0+2 days: first skymaps
 cWB (17 min)
 LALInference Burst (LIB, 14h)
- T0+4months: refined skymaps
 BAYESTAR

►LALInference


based on CBC pipeline output

	Spectroscopic Follow-up										
Instrument	No. of Cand	idates	Discovery Survey	Epochs	λ (Å)	$\Delta \lambda^{a}$ (Å)	GCN				
KeckII+DEIMOS	8		iPTF	1	4650 - 9600	3.5	18337, 18341				
LT+SPRAT	1		Pan-STARRS1	1	4500 - 7500	18	18370, 18371				
NTT+EFOSC2	10		QUEST/Pan-STARRS1	1	3650 - 9250	18	18359, 18395				
P200+DBSP	1		Pan-STARRS1	1	3200 - 9000	4 - 8	18372				
UH2.2m+SNIFS	9		Pan-STARRS1	1	3200 - 10000	4 - 6	_				
			Radio	Follow-up							
Instrument	No. of Cand	idates	Discovery Survey	Epochs	Freq. (GHz)	Lim. Flux ^b (uJy)	GCN				
VLA	1		iPTF	3	6	$\lesssim 50$	18420, 18474, 18914				

- Some optical candidate counterparts were followed-up spectroscopically and in radio
- Most candidates were SNIa,SNII, dwarf novae, AGN → not associated with BBH
- Reaction times and sky coverages at all wavelengths successfully demonstrated the new EM-follow up program is overall working well

Abbott+2016 ApJL 826,13

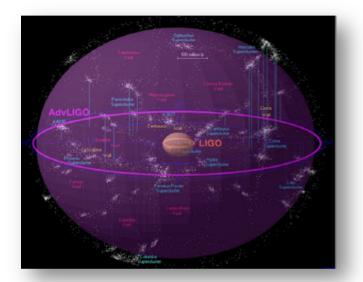

EM counterparts of more uncertain GW sources

Isolated NS

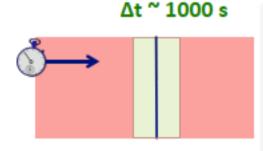

- Seismic activities in NSs with high B (B>10¹⁴ – 10¹⁵ G, "magnetar") are thought to produce GWs
- NS instabilities may originate bursts (0.1-1s, seldom 3-4 min) observed at 40-50 keV -> Soft Gamma Repeaters, SGR → Lx ~ 10⁴²⁻⁴⁷ erg/s

Supernovae

- Gravitational core collapse of massive stars (>8-10_M_☉): SN II, SN Ib/c
- X/UV emission at ~hours after explosion (Shock Breakout) and opt emission after tens of days
- Gamma-rays (0.1-100 MeV) → "long" GRB + afterglow for a subclass of these SNe (the most energetic ones)

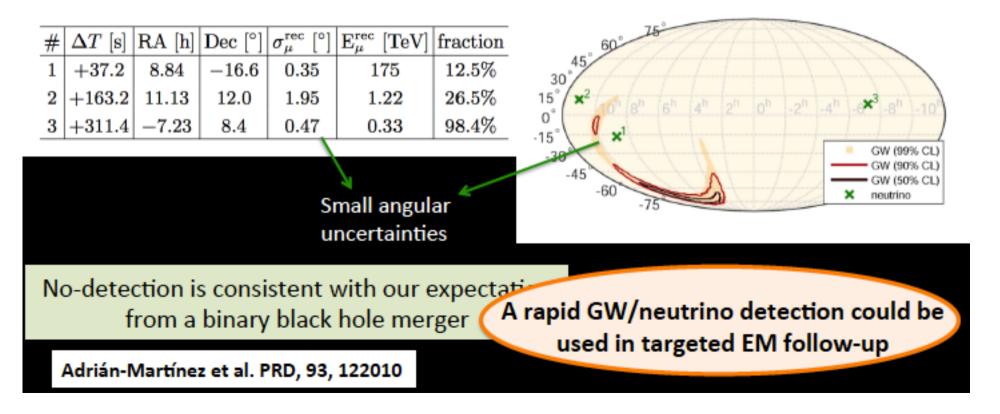


Current GW-triggered EM follow-up


- The first Advanced LIGO scientific run started on September 2015 (01)
- O1 expected to detect a NS-NS up to
 70 Mpc
- in 4 months 0.0005-4 NS-NS were expected (Abbott+2016 LRR 19) (BBH estimates largely uncertain and in the range ~0.006-17 at 400 Mpc)

Compact I	binary coales	cence at nominal sensitivit	y (2019)	Mass: NS = 1.4 Mo
	Source	Low yr ⁻¹ yr ⁻¹ High yr ⁻¹ yr ⁻¹	Max yr ⁻¹	BH = 10 Mo Advanced era Sky location and orientation
Advanced	NS-NS NS-BH BH-BH	$\begin{array}{c ccccc} 0.4 & 40 & 400 \\ 0.2 & 10 & 300 \\ 0.4 & 20 & 1000 \end{array}$	1000	averaged range 197 Mpc for NS-NS 410 Mpc for NS-BH
(Abadie et	t al. 2010, CQG	27)		968 Mpc for BH-BH

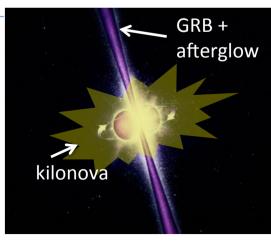
High-Energy Neutrino Follow-up of GW150914


Search for coincident neutrino candidates within data of IceCube and Antares

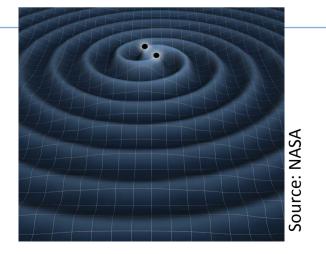
Within ±500 s of GW150914: IceCube neutrino candidates 3 ANTARES neutrino candidate 0

- Consistent with the expected atmospheric background
- No neutrino candidate directionally coincident with GW150914

GW150914


EM counterparts of most promising GW sources (CBCs)

NS-NS or NS-BH*


- <u>Collimated EM emission</u>: Several indirect evidence associate NS-NS/NS-BH with the progenitors <u>"Short" γ-ray bursts (GRB, <2 s)</u> + afterglow progenitors (e.g. Eichler et al. 1989, Berger2014)
- Isotropic EM emission: Thermal emission ("macronova") is expected in the opt/NIR bands, 1-10 days after the coalescence (e.g. Lattimer & Schramm 1976). Radio emission at T+1 month is also expected. If a NS is formed, X-ray emission is also predicted (e.g. Siegel & Ciolfi 2015)

BH-BH*

- No obvious EM counterpart is expected from such systems since no presence of matter is expected around BHBH
- Recent works however propose some possible scenarios where some material may be bound to the system and emit EM radiation (e.g. remnant disk, Perna et al. 2016; third body tidal disruption, Seto& Muto2011)

*stellar-mass black hole (i.e. <100 M_{\odot})

