SciNeGHE 2016 <u>20/10/2016</u>

Gravitational waves transients : Sources and Searches

Shubhanshu Tiwari

DCC number :G1602143

Outline

- Gravitational waves
- A brief history of gravitational waves
- Sources and searches
 - "Known" transient sources
 - Modelled searches
 - Un-modelled searches
 - Modelled sources in un-modelled search
 - Computation of background and significance
 - Data quality and glitches
- Gravitational Waves observations : A proof that the system works
- Future outlook

Gravitational Waves

- Spacetime is a mathematical quantity and is defined as a 4 dimensional, smooth, connected (affine and torsion free connection) Lorentzian Manifold (M,g), this implies that the metric (g) has signature (3,1) or (1,3)
- * This metric determines the geometry of spacetime
- In GR spacetime is a deformable object, gravity is responsible for this, perturbation on spacetime are represented as perturbation of the metric
- * The tensorial perturbation of this metric are known as **gravitational waves**
- * It has two polarisation : plus + and cross **x**
- We observed for the first time this fundamental process of nature i.e. dynamical spacetime on Sept. 14th

A brief history of gravitational waves : formalism

- * **1916** : final formulation of the Einstein's field equations of general relativity
- * 1918 : the effect of gravitational waves (GWs) was calculated, resulting in Einstein's famous "quadrupole formula"
- * **1936** : Einstein rejects the existences of gravitational waves calling it an artefact of linearisation
- * 1957 1970 : Goldberg, Pirani, Bondi, Sachs and others proved the physical reality of GWs
- * **1991 now** : Damour, Iyer, Blanchet et al develops post-Newtonian theory for compact binary coalescence and further developments are going on (valid during inspiral)
- * 1999 now : Buonanno, Damour et al develops effective one body approach for two body dynamics (valid till late inspiral)
- 2005 now : Numerical relativity matured and provides exact solutions for compact binaries

A brief history of gravitational waves : experiments

- * 1962 : Russian physicists M. E. Gertsenshtein and V. I. Pustovoit publish paper sketch optical method for detecting gravitational waves
- * 1969 : Physicist Joseph Weber claims gravitational wave detection using massive aluminium cylinders—replication efforts fail
- * 1972 : Rainer Weiss of the Massachusetts Institute of Technology (MIT) in Cambridge independently proposes optical method for detecting waves
- * 1974 : Astronomers discover pulsar orbiting a neutron star that appears to be slowing down due to gravitational radiation—work that later earns them a Nobel Prize
- * 1995 : Construction starts on GEO600 gravitational wave detector in Germany, which partners with LIGO and starts taking data in 2002
- * 1996 : Construction starts on VIRGO gravitational wave detector in Italy, which starts taking data in 2007
- * 2002–2010 : Runs of initial LIGO—no detection of gravitational waves
- * 2007 : LIGO and VIRGO teams agree to share data, forming a single global network of gravitational wave detectors
- * 2015 : Advanced LIGO begins initial detection runs in September
- * **2016** : On 11 February, NSF and LIGO team announce successful detection of gravitational waves
- 2016 now : Major upgrades in the detectors and the two LIGOs detected gravitational waves from binary black hole merger

Sources and searches : "known" transient sources

Modelled Sources

- * Compact binary coalescence
 - Binary Neutron Stars
 - * Binary Black Holes
 - * Black Hole Neutron Stars
- * Cosmic strings

Un -Modelled Sources

- * Supernovae
- * Some non vanilla CBC
 - * highly eccentric
 - * highly precessing, high mass ratio etc
 - * exotic CBC
- * Surprises

Image Credit : SXS & NASA

Sources and searches : Generic scheme for gravitational wave search

Sources and searches : Detector response

 GWs interferometers are not pointing type detectors, detector's response is directionally dependent called as *ξ*()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()
 ϵ()

$$\xi(t) = F_{+}(\Theta, \Phi, \Psi)h_{+}(t) + F_{\times}(\Theta, \Phi, \Psi)h_{\times}(t)$$

* Where $F_{+}(\Theta, \Phi, \Psi) = \frac{1}{2}(1 + \cos^{2}\Theta)\cos 2\Phi \cos 2\Psi - \cos\Theta \sin 2\Phi \sin 2\Psi$ $F_{\times}(\Theta, \Phi, \Psi) = \frac{1}{2}(1 + \cos^{2}\Theta)\cos 2\Phi \sin 2\Psi - \cos\Theta \sin 2\Phi \cos 2\Psi$ $F_{+}(\Theta, \Phi, \Psi) = \frac{1}{2}(1 + \cos^{2}\Theta)\cos 2\Phi \cos 2\Psi - \cos\Theta \sin 2\Phi \sin 2\Psi$ $F_{+}(\Theta, \Phi, \Psi) = \frac{1}{2}(1 + \cos^{2}\Theta)\cos 2\Phi \cos 2\Psi - \cos\Theta \sin 2\Phi \sin 2\Psi$ $P(\theta, \phi) = F_{+}(\theta, \phi, \psi)^{2} + F_{\times}(\theta, \phi, \psi)^{2}$ $F_{+}(\Theta, \Phi, \Psi) = \frac{1}{2}(1 + \cos^{2}\Theta)\cos 2\Phi \sin 2\Psi - \cos\Theta \sin 2\Phi \cos 2\Psi$ Antenna power

Schutz Class.Quant.Grav. 28 (2011) 125023

Sources and searches :Modelled search for CBC sources

9

- Uses waveform models to search for CBC signals in the data, this technique is called Matched Filtering
- It uses the correlation between the data and various waveforms models called templates
- The goal is to find the optimal template which would maximise the signal to noise ratio
- The consistency check is performed by a chi-squared test

Sources and searches :Modelled search for CBC sources

- The four-dimensional search parameter space (component masses and spins) covered by the template bank shown projected into the component-mass plane.
- The colours indicate mass regions with different limits on the dimensionless spin parameters χ1 and χ2.
- * The trigger gives the first guess of masses, spins and strength
- Sky map is generated shortly after the trigger generation

LVC arXiv:1606.04856 (2016) O1 BBH

Sources and searches :Modelled search for CBC sources

- * Benefits
 - Near optimal sensitivity for modelled signals with known parameters
 - * Confirmation of the source of the event
- * Limitations
 - * Less/No sensitivity to poorly modelled or un-modelled signals

Sources and searches : Un-modelled search

- Uses the estimation of excess energy in the detectors
- Exploits the presence of signal (energy) in multiple detectors to appear coherently i.e. consistent in time and sky location
- Data is combined from the networks of detectors
- * No templates/waveforms models are required/used

Sources and searches : Un-modelled search schematic 1

Data conditioning

- Regression to get rid of stationary noise (resonances)
- Non uniform noise in frequency are conditioned with whitening

Time frequency transform and selection of pixels

- TF transform such as WDM are used
- * Pixels which are over the threshold from the data conditioning $k = p_0 \left(2^j t - k \right)$ are selected

····▶ Clustering ···•

- Pixel with most energy and surrounding pixels are selected
- Various methods to cluster

 $F'_{\times} = F_{+} \sin(\Psi) + F_{\times} \cos(\Psi)$

Sources and searches : Un-modelled search schematic 2

$$F'_{+} = F_{+} \cos(\Psi) - F_{\times} \sin(\Psi)$$

$$\downarrow \text{Likelihood analysi} = F_{+} \sin(\Psi) + F_{\times} \cos(\Psi)$$

- Define a multidimensional space N = number of detector and detector data on axes
- * Likelihood is wave frame rotation invariant
- * We rotate it in such a way that the antenna pattern function are orthogonal and + is dominant $F_{+} |E_{+}| |E_{+}| |F_{+}|$ dominant polarisation frame (DPF)
- In this frame detector response corresponding to maximum likelihood is projection of data vector X on the DPF
- Orthogonal to this plane is the Null Stream (N) which describes the noise
- Maximum likelihood points to the reconstructed direction
- We get sky map, polarisation, reconstructed waveform and coherent signal strength as output

14

Sources and searches : Un-modelled search

- * Benefits
 - * No dependance on the waveform models
 - * Can detect surprises
- Limitations
 - Background is not as clean as the modelled search which limits the sensitivity to the know sources
 - * Single detector triggers are less important

Sources and searches : CBC sources in un-modelled search

- * Some "non-vanilla CBC" sources for which the modelling is not precise/expensive are covered by un-modelled searches
 - * eccentric Black Hole binaries
 - * Intermediate mass ratio inspirals
 - * exotic binaries
- * Some CBC sources will have very short presence is our detectors and will be very burst like
 - Heavy black holes (IMBBH)

\sim ~

- * An example of eBBH in un-modelled search
- * The efficiency of detection is independent of eccentricity
- Will be interesting to follow up as they are expected to come from galactic nuclei

V Tiwari+ Phys.Rev. D93 (2016) no.4, 043007

Sources and searches : background and significance

- Background is generated by unphysical time sliding the data to eliminate real signals
- Rank the background triggers

 (either the modelled way or the un
 modelled way) according to the
 detection statistics
- estimated p-value from CDF
- minimum p-value estimate is limited by the number of time slides one can perform
- There is also a Bayesian way using KDE of foreground and background in SNR chi-squared space.

SUPER LAGS – time-shifts are performed between different segments

Sources and searches : Data quality and glitches

- * Answers the important question, was the signal an artefact or real astrophysical one, apart from a random noise fluctuation?
- The environmental factors effect the ever so sensitive detectors and they are characterised and vetoed, few glitches during last observation run
 - Anthropogenic (man made)
 - Seismic activity (earth made)
 - RF laser modulation noise
 - * "blips" (unknown source)
- You wanna hunt glitches, here is your opportunity GravitySpy
 - https://www.zooniverse.org/projects/ zooniverse/gravity-spy

Sources and searches : Source Identification

- * For the signals for which we have good models we can have straight forward application of Bayes' theorem to get a posterior PDF for various parameters (masses, spins, distance etc)
- Two waveform models are used namely EOB (effective one body) and IMRPhenom(phenomenological wavefom)

LVC Phys.Rev.Lett. 116 (2016) no.24, 241102

Sources and searches : Source Identification

- For the signals not having accurate waveforms
 - * Time frequency behaviour gives a hint about the source
 - * EM counterpart can provide smoking gun for SNs etc
 - * Directly comparing the reconstructed waveform with Numerical relativity

LVC Phys.Rev. D93 (2016) no.12, 122004

21

Gravitational Waves observations : A proof that the system works

- * Using the prescribed machinery we have detected two events both binary black holes
- We are starting to fill up the gravitational waves transients sky
- O2 will start soon and VIRGO will join breaking a lot of degeneracies in the parameters

Gravitational Waves observations : Exciting times ahead

- * Black Holes are inevitable in GR
- We have detected two events both binary black holes mergers, but the story is far from finished, we want to see
 - * Long adiabatic inspiral
 - * Higher harmonics
 - Constrain Hawking's area theorem
 - * Late time QNM
 - Constrain Cosmic Censorship and no hair theorem

Gravitational Waves observations : Exciting times ahead

- Black holes are pure spacetime we look forward to detect some matter
 - * Detect a Binary Neutron Star
 - With EM counterpart (GRBs and afterglows)
 - * constrain Equation of State
 - * Detect Collapsing star
 - With EM counterpart and neutrinos
 - understand the mechanism
- * Be surprised

Thank you

"Yesterday's discovery is todays calibration and tomorrow's background."

-Richard Feynman