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2Universitat de València, 1EGO and PISA INFN, 3SUPA and IGR Glasgow,
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Universitat de València
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Data Quality for Advanced detectors

Transient noise (glitches) can occur within the targeted
frequency range and can mimic Gravitational Waves events

We can cure the problem either in experimental apparatus or
by using signal processing strategy

More than 200000 auxiliary channels are recorded to monitor
instrument behaviour and environmental conditions

In the case of clear correlation within glitches in gravitational
wave channel and auxiliary ones, data are discarded from the
analysis (vetoed)
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Cleaning our triggers distribution

Here an example of the impact of data-quality vetoes and signal
consistency requirements on the background trigger distribution
from the cWB search for gravitational-wave bursts by coherent
network SNR.
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Typical glitchgram for detectors
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Our ’typical’ gravitational waves
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Our glitch zoo

https://www.zooniverse.org/projects/zooniverse/gravity-spy
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GravitySpy project

https://www.zooniverse.org/projects/zooniverse/gravity-spy
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Why Glitch Classification?

As prompt characterization of noise will be critical for
improving sensitivity, a fast method for glitch classification
was needed.

We aim to develop methods for automatic classification of
glitches.

We present three methods developed for automatic glitch
classification.

We started using simulated data sets to better understand the
performance of the different glitch classifying codes.

We tested our pipelines on real data (LIGO ER7 data).
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Principal Components.

All three methods use at some stage Principal Components (PCs).
PCs are a set of orthogonal basis vectors, which are ordered so that the first PC
represents the most common feature of a set of waveforms.
Therefore, a few PCs can be used to represent all the common features of the
waveforms.
The signal model consists of a linear combination of PCs .

Figure: A glitch reconstructed by PCAT using 33 PCs.

Results can be strongly effected by the number of Principal Components.
We use the variance method to choose the ideal number of Principal
Components.
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PC-LIB

PC-LIB is an adaptation of the parameter estimation and model selection tool
LALInference.
A set of Principal Components for a type of glitch is made using the high pass
filtered time series of fifty glitches for that type.
A linear combination of the PCs, multiplied by the PC coefficients, is then used
as the new signal model in LIB for each different population of noise transient.
The different signal models for each glitch population can then be used for
Bayesian model selection, which can determine the type of each new noise
transient that is detected in the data.

Figure: A glitch reconstructed by PCAT using 33 PCs.
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PCAT

Principal Component Analysis for Transients (PCAT) is a python-based
classifier based on Principal Component Analysis

The time series of whitened glitches are stored in a matrix on which PCA
is performed.

The results of the PCA can be visualized with scatter plots of the
principal component coefficients

PCAT uses the PC coefficients to classify the glitches by applying a
Gaussian Mixture Model (GMM) classifier to the coefficients.
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WDF-ML: introduction

WDF-ML consists of an event detection algorithm, Wavelet
Detection Filter (WDF), followed by a Machine Learning
(ML) classification procedure.

WDF is part of the Noise Analysis Package (NAP), a C++
library embedded in python, developed by the Virgo
Collaboration

A whitening procedure is applied to the data and is based on
a Linear Predictor Filter.

The parameters are estimated through a parametric Auto
Regressive (AR) model fit to the noise PSD.
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WDF-trigger

The thresholding function is applied to the wavelet transform of
the noisy signal, then the output is inverted and the wavelet
transformed. After the wavelet thresholding, we selected the
highest coefficients of the wavelet transform which are supposed to
contain only the signal and not the noise.

Es =

√∑
k,j

w2
k,j (1)

being wk,j the wavelet coefficients above the threshold.
In this way Es represent the signal energy content, so we can build
our receiver detector which represents the signal to noise ratio, as

SNR =
Es

σ̂
(2)
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WDF-ML: Machine Learning

Completely unsupervised algorithms. No target function

Wavelets coefficients and Meta data (SNR, Freq,Duration) represents our
”features”

Features selection uses PCA transform an Spectral embedding on 2 dimensions

The Gaussian Mixture Model (GMM) machine learning classifier is then applied
to the outputs of WDF for classification.
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MDC: Data set 1

To test and compare methods we create a simulated data set in aLIGO Gaussian
noise.

Data set 1 is an ideal data set where all of the glitch types are well separated in
frequency and SNR.

The data set contains 1000 sine Gaussian waveforms and 1000 Gaussian
waveforms in simulated Gaussian noise.

The sine Gaussian waveforms have a frequency = 400Hz and an SNR between 5
and 30.

The Gaussian waveforms are centred at f = 0Hz and have an SNR between 20
and 250.
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Data Set 1 Results

Table shows the % of detected transients that were classified in each type.

A few low frequency SG, and low SNR G were in the incorrect classes.

Overall classification efficiency very good!

SG G
PCAT Type 1 99% 0%
PCAT Type 2 1% 100%

LIB Type 1 99.9% 5%
LIB Type 2 0.1% 95%

WDF Type 0 99.5% 2.4%
WDF Type 1 0.3% 46.1%
WDF Type 2 0.2% 51.5%
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MDC: Data set 2

We use a second data set to see if we can classify glitches by waveform
morphology only.

We use 1000 sine Gaussian waveforms and 1000 Ring-down waveforms.

All waveforms have identical frequency 400Hz and a identical duration 2ms.

The SNR of the simulated glitches is between 10 and 500.
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Data Set 2 Results

Table shows the % of detected transients that were classified in each type.

The few transients in the incorrect class are those with the lowest SNR.

5PCs PCAT, 7PCs LIB and 10 PCs WDF-ML.

All methods can classify by waveform morphology alone.

SG RD
PCAT Type 1 1.1% 97.4%
PCAT Type 2 98.9% 2.5%

LIB Type 1 97.8% 4.8%
LIB Type 2 2.2% 95.2%

WDF-ML Type 0 8.7% 100%
WDF-ML Type 1 48.0% 0%
WDF-ML Type 2 43.3% 0%
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MDC: Data Set 3

The third data set is to see what happens if different types have a very
wide range of parameters.

The simulated glitches are Gaussian, sine Gaussian and Ring-down
waveforms at five second intervals.

The frequencies are distributed linearly between 40-1500 Hz.

Majority of the glitches have an SNR between 1 and 300.

30 20 10 0 10 20 30
Time (ms)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Am
pl

itu
de

 (1
/s

qr
t(H

z)
)

1e 20

40 30 20 10 0 10 20 30 40
Time (ms)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Am
pl

itu
de

 (1
/s

qr
t(H

z)
)

1e 20

20 15 10 5 0 5 10 15 20
Time (ms)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Am
pl

itu
de

 (1
/s

qr
t(H

z)
)

1e 20
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Data Set 3 Results

PCAT 20PCs, LIB 5PCs, WDF-ML 10PCs.

All methods have the Gaussians in there own class.

Cannot distinguish between the sine Gaussian and Ring-down waveforms when
the parameter range is so large.

SG G RD
PCAT Type 1 15.5% 0% 13.6%
PCAT Type 2 36.8% 0% 41.4%
PCAT Type 3 14.2% 0% 13.0%
PCAT Type 4 9.1% 0% 13.0%
PCAT Type 5 0.8% 0% 0.3%
PCAT Type 6 21.8% 0% 17.2%
PCAT Type 7 1.8% 100% 1.5%

LIB Type 1 39.5% 4.9% 23.8%
LIB Type 2 17.3% 88.3% 23.2%
LIB Type 3 43.3% 6.8% 53.0%

WDF-ML Type 0 89.5% 9.6% 86.9%
WDF-ML Type 1 5.9% 49.7% 7.0%
WDF-ML Type 2 4.6% 40.7% 6.1%

Classification methods for noise transients in advanced gravitational-wave detectors

Class. Quant. Grav., 32 (21), pp. 215012, 2015.
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Real Data: ER7 LIGO data

Data from the 7th aLIGO engineering run (ER7), which began
on the 3rd of June 2015 and finished on the 14th of June
2015. The average binary neutron star inspiral range for both
Hanford and Livingston detectors in data analysis mode
during ER7 was 50− 60 Mpc.

The total length of Livingston data analysed is ∼ 87 hours.

The total length of Hanford data analysed is ∼ 141 hours.
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Real Data: ER7 L1
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Real Data: ER7 H1
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Conclusion

Jade Powell labeled all the glitches and classified them by eye. This
classification is used as reference.

In the ER7 data from aLIGO Livingston PCAT missed 90 transients and
classified 95% of the remaining transients correctly.

PC-LIB missed 33 transients and classified 98% of the remaining transients
correctly.

WDF-ML classified all transients and 97% of them were correct.

In aLIGO Hanford PCAT missed 120 transients and classified 99% of the
remaining transients correctly.

PC-LIB missed 6 transients and classified 95% of the remaining transients
correctly.

WDF-ML classified all transients and 92% of them were correct.

We conclude that our methods have a high efficiency in real non-stationary and
non-Gaussian detector noise.

Submitted:
Classification methods for noise transients in advanced gravitational-wave detectors II:
performance tests on Advanced LIGO data. (by the authors)
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What’s next?

Three different methods have been developed for the fast classification of noise
transients.

Transients are split in to types by waveform morphology first, and then can be
split up in to further types by frequency and SNR.

Results are similar for all methods.

We plan to use Dictionary Based Algorithm.

We plan to use Images Deep Learning Classification

Next we plan on looking at how these codes perform when using data from
multiple auxiliary channels.

We are ready to apply WDF-ML to O1 and O2 run data.
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