
Sifting the Gravitational-Wave Universe 
via Multimessenger Astronomy: 

Forthcoming Prospects for 
Continuous-Wave detection 

PAOLA LEACI

SciNeGHE 2016, Pisa (Italy)



SciNeGHE	2016	


o  Fundamental Physics, Astrophysics and Cosmology with
     Gravitational Waves  

o  Global GW detector network

o  GW sources

o  Multi-messenger searches

o  Continuous Waves (CWs)

o  Conclusions



OUTLINE

2	P.	Leaci	



SciNeGHE	2016	 3	P.	Leaci	

Fundamental Physics,
Astrophysics

and Cosmology 
with Gravitational Waves  
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… a few examples 

Fundamental Physics  
²  Properties of  GWs 

•  Testing GR  
•  How many polarisations are there? 
•  From the dispersion relation of  GWs we can constrain the Compton 

wavelength of  the graviton 
²  EoS of  supranuclear matter 

•  Signature of  EoS in GWs emitted when neutron stars merge 

Astrophysics  
²  Formation and evolution of  compact binaries and their populations 

•   masses, mass ratios, spin distributions, demographics  
²  Understanding Supernovae 
²  Finding why pulsars glitch 

•  sudden excursions in pulsar spin frequencies 
²  Ellipticity of  neutron stars 

•  mountains of  what size can be supported on neutron stars?  
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… a few examples 

Cosmology 

²  Primordial	GWs		
•  quantum	fluctuaAons	in	the	early	Universe	produce	a	stochasAc	background	
		

²  ProducAon	of	GWs	during	early	Universe	phase	transiAons		
•  phase	transiAons,	pre-heaAng,	re-heaAng,	etc.,	could	produce	detectable	

stochasAc	GWs		

Challenges 
 
² Models	and	simulaAons	of	sources	

•  neutron	star	cores,	corner	cases	of	parameter	space	in	binary	systems…	

²  Rapid	parameter	esAmaAon	of	GW	events	
•  especially	important	if	we	do	find	high	event	rate	

²  Improved	understanding	of	“detector”	noise	and	false	alarm	rate	
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Global GW detector network 

LIGO	Hanford	
(WA,	USA):		
4	km	dual	

recycled	Fabry-
Perot	Michelson	

IFO	

LIGO	Livingston	(LA,	USA):	4	km	dual	
recycled	Fabry-Perot	Michelson	IFO	

VIRGO	(Cascina,	IT):		
3	km	power	recycled	
Fabry-Perot	Michelson	

super-a^enuator	
seismic	isolaAon	

GEO600	(Hanover,	GE):		
600	m	folded	arms	dual	recycled	Michelson	

triple	pendulum	suspensions	

KAGRA	(Hida-city,	JP):	
UNDER	

CONSTRUCTION	
(2019+)	

LIGO-India	(IndIGO):	
PLANNED	(2022+)	

•  Advanced LIGO started taking data in Sept. 2015 

•  Advanced Virgo will likely join in March/April 2017 

•  By 2018, sensitivity expected to improve by a factor 
of  10 relative to Initial detectors 
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Preliminary	Joint	LVC	Plan	for	the	Second	Observa5on	period	O2	
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Advanced LIGO and Virgo expected sensitivity 
progression 

LVC, arxiv.org/abs/1304.0670	
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Beyond Advanced LIGO & Virgo 

²  2006-2010:	detectors	took	2	years	worth	of	data	at	unprecedented	sensi:vity	levels	
²  2015-2022:	five	large	detectors	will	become	opera:onal	
²  Advanced	LIGO	detectors	both	installed	and	locked,	Advanced	Virgo	will	come	soon	online,	

commissioning	over	the	next	<=3	years	has	the	potenAal	to	see	first	and	several	detecAons			

²  Einstein	Telescope	(2018-2020):	10	km	arm	length,	triangular	underground	cryogenic	detector		
²  LIGO	Voyager	(2025-2030):	cryogenic	(120	K)	high	power;	x	3	improvement	in	aLIGO	strain	sensiDvity		
²  LIGO	Cosmic	Explorer	(2030+):	new	40	km	arm	length	interferometer		
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GW sources 

u 	Compact	Binary	Coalescing	systems	(CBC),	well	
modeled	waveforms.		
The	inspiral,	merger	and	ring-down	of	binary	NSs	
and	Black	Holes	

u 	Cosmological	GW	(stochas:c	background)	
A	background	of	primordial	and/or	astrophysical	GWs	

u 	Supernovae,	GRBs	(bursts),	unmodeled	waveforms	
	Short-duraAon	GW	events	in	coincidence	(ideally)	with		
signals	in	electromagneAc	radiaAon/neutrinos		
	

u 	Fast-spinning	NSs	in	our	galaxy	(CWs)	
e.g.	non-axisymmetric	spinning	NSs		

T
R

A
N

S
IE

N
T

 S
IG

N
A

LS
 

C
O

N
T

IN
U

O
U

S
 S

IG
N

A
LS

 



SciNeGHE	2016	 P.	Leaci	 11	

The 1st direct GW observation (PRL 116, 061102, 2016) 

Hanford	Livingston	

September 14, 2015  
 

09:50:45 UTC 



The GW-EM follow-up program 

Ø  More than 60 Partners from 19 countries  
Ø  About 150 instruments, covering the full spectrum from radio to 

very high-energy gamma rays 
 
Policy for releasing GW triggers : “Until first 4 GW events have been 
published, triggers will be shared promptly only with astronomy 
partners who have signed an MoU with LIGO –Virgo collaborations”  
 

Multi-messenger Astronomy with GW searches 
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I 



Multi-messenger Astronomy with GW searches 
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II 
Ø  Thanks to EM observations we can know (with high accuracy) the 

rotational parameters of  several NSs, in particular radio pulsar 
(=> useful for both DIRECTED and TARGETED searches) 

Ø  GW searches in coincidence with neutrinos (ANTARES, IceCub 
and future KM3NeT): useful to improve SOURCE SKY 
LOCALIZATION 
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•  Residual EM radiation -> remnant of  the Big Bang 

•  Discovered by Penzias & Wilson in 1964  

•  The B-modes (one of  the polarizations of  such a radiation) 
are a type of  signal coming from the cosmic inflation, and are 
determined by the primordial GW density 

•  LSPE (Large-Scale Polarization Explorer)  --- >  
http://planck.roma1.infn.it/lspe/ (LSPE is a mm-wave polarimeter 

aboard of  a stratospheric balloon, aimed at measuring the polarization of  the 

CMB at large angular scales) 

 

COSMIC MICROWAVE BACKGROUND (CMB) 
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CW SIGNALS 
	

•  More than 2500 observed NSs (mostly pulsars) and O(108 – 109) 
expected to exist in the Galaxy 

•   To emit CWs a NS must have some degree of  non-axisymmetry 
originating from 

Ø  deformation due to elastic stresses or magnetic field 
Ø  deformation due to matter accretion (e.g. LMXB) 
Ø  free precession around rotation axis 
Ø  excitation of  long-lasting oscillations (e.g. r-modes)  

B.	Owen	h^p://www.indiana.edu/	 h^p://en.wikipedia.org/	
NRAO/AUI/NSF	
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CWs from rotating neutron stars  

•  Spinning neutron stars (NSs) with rotation rate fr, equatorial non-axisymmetry  
ε = (Ixx-Iyy)/Izz (with Iab moments of  inertia) are expected to emit CWs with 
frequency f  = 2 fr . 

•  The measured strain amplitude h0 on Earth is given by  

with d distance to the source.  
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€ 

ε ≤10−3
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ε ≤10−1

o 	Normal NS 

o  Hybrid (hadron-quark core) 

o  Extreme quark stars 
[Johnson-McDaniel	&	Owen,	
PRD	87,	129903	(2013)]	

[See	C.	Palomba’s	talk]	



CW SEARCH-TYPES 

q 	The way to search for CW signals depends on how much about the source is 
known. There are different types of  searches:  

* TARGETED searches for observed NSs. The source parameters (sky location, 
frequency & frequency derivatives) are assumed to be known with great 
accuracy (e.g. the Crab and Vela pulsars) => O(laptop) 
 
* DIRECTED searches, where sky location is known while frequency and 
frequency derivatives are unknown (e.g. Cassiopeia A, SN1987A, Scorpius X-1, 
galactic center, globular clusters) => O(cluster) 
 
* ALL-SKY searches for unknown pulsars => computing challenge  
   (Einstein@Home	–	Cloud	–	Grid	Infrastractures)		
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CW searches from 
spinning NSs in binary 

systems 
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CWs from spinning NSs in binary systems 

  •   More than half  of  the observed radio pulsars (with rotation rates that can 
plausibly emit CWs in the most sensitive band of  the Virgo-LIGO detectors) 
are located in binary systems 

•  Accretion from a companion may cause an asymmetrical quadrupole moment 
of  inertia of  the spinning NS 

•   The CW signal from a source in a binary system is frequency-modulated by the 
source’s orbital motion, which in general is described by five unknown Keplerian 
parameters 

•  Best candidate: Scorpius X-1 (the brightest low-mass X-ray 
binary), typically used as a test bench for all algorithms, as 
sky-position and binary orbital parameters are known with 
high accuracy 

•  All current methods to search for CWs emitted by NSs in binary systems are 
incomplete! 

ArAst's	impression	of	an	X-ray	Binary	
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Novel (directed) search strategy to 
detect continuous gravitational waves �

from neutron stars �
 in low- and high-eccentricity binary 
systems; P. Leaci and the Rome Virgo group 

(submitted to PRD)
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The Novel method

•  Very fast and robust directed search incoherent method exploiting the 
peak-amplitude related statistic (PRD 90, 042002, 2014) �


hOp://arxiv.org/abs/1607.08751	

•  Algorithm validation performed by adding 131 artificial CW signals 
from pulsars in binary systems to simulated detector Gaussian 
noise (Sh = 4 x 10-24 Hz1/2 in [70, 200] Hz )  

•  SEARCH PARAMETER SPACE

•  Total Computing Cost:  2.4 CPU hours

•  The pipeline detected 128 signals 
•  The smallest GW amplitude detected is h0 ~ 7 x 10-25

•  By using 3 IFOs, and Tobs= 1 year, we gain more than a factor 3 in 
sensitivity!

       

Tobs = 1 month; TFFT = 512 s;  
Single IFO
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Frequency Orbital semi-
major axis

Orbital Period

RESULTS I 



SciNeGHE	2016	 P.	Leaci	 23	

RESULTS

Eccentricity Argument 
of periapse

Time of periapse 
passage

II 
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Sensitivity Estimation

Injected Amplitude	

Detected if the 
injected amplitude 
would have been 
scaled up to the 
starred value	
	

    Tobs = 1 month
Single IFO



o  The novel presented algorithm is the first one in the literature 
able to provide estimates for orbital eccentricity and 
argument of periapse. 

 
 
 

o   Performance comparison wrt pipelines used in Messenger et al., 
PRD 92, 023006 (2015) and Leaci & Prix, PRD 91, 102003 (2015) 
and S. Suvorova et al., PRD 93, 123009 (2016)

o  The usage of different pipelines, searching for the same class of 
sources, and implemented with independent software, is crucial 
for robust vetting and accurate validation of results.
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Concluding Remarks and Future Prospects
I 
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²  There are a plethora of ongoing and upcoming GW searches

² Several efforts actually ongoing:

o  Improving sensitivity of all-sky/directed/targeted searches 
for CWs from isolated AND binary systems

o  Analysis speedup (GPU technology)

o  Prioritization of scientific goals for GW searches in observing 
runs (based on discovery potential, computing cost)

o  Establishing a tighter link with EM observatories
 
²  We are looking forward to other GW detections!
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Concluding Remarks and Future Prospects
II 
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THANKS FOR 

LISTENING!

P.	Leaci	

CW signals might be the next detection!!!
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2016	

Jul	 Aug	 Sep	 Oct	 Nov	 Dec	 Jan	 Feb	 Mar	 Apr	 May	 Jun	 Jul	

2017	

H1	

L1	

Virgo	

GEO	 ~	75%	Observing	Run	

DownDme	–		Data	producDon	Off	Commissioning		–		Data	producDon	On	
Small	fracDon	of	Dme	in	observing	mode	
Engineering	Run		–		Data	producDon	On	
Detector	in	observing	mode	for	a		fracDon	of	Dme	

Observing		Run		–		Data	producDon	On	
Detector	in	observing	mode	24/7	–	EM	alerts	

Preliminary	Joint	LVC	Plan	for	the	Second	Observa5on	period	O2	

Different	scenarios		
for	the	restart	a:er	the	pause	

Decision		
point	



All-sky search for CWs from spinning NSs in binary 
systems 

u 1st	All-Sky	search	for	conAnuous	
unknown	GW	sources	in	binary	
systems	that	analyzed	LIGO	S6	and	
Virgo	VSR2-R3	data;	LVC	PRD	
90,062010	(2014)	

u Algorithm	based	on	doubly-
Fourier-transformed	data	

u 	f:	[20	-	520]	Hz;		P:	[2	-	2254]	h;		
						a:	[6x10-4	-	6500]	ls;	e	=	0	

u ULs	on	Scorpius	X-1	also	put,	from	20	to	57.25	Hz	->	a	factor	of	3	beOer	than	the	
all-sky	upper	limits		
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ALL-SKY SEARCHES 

Computing cost ~ T6+ 

€ 

SNR ~ h0
Sn

T

q  Need to search for unknown sources located everywhere in the sky, with signal 
frequency as high as ~ 2 KHz and with values of  spin-down as large as possible => 
 
COMPUTATIONALLY LIMITED!! 

q  Optimal coherent strategies (PRD 58, 063001, 1998) with long observations time T 
become computationally undoable             

     

q  Need to resort to SEMICOHERENT METHODS, where the entire data set is split into N 
shorter segments. Each segment is analyzed coherently, and afterwards the information 
from the different segments is combined incoherently: 

q  Fully coherent FOLLOW-UP happens only for the most promising candidates!  
     [Shaltev, Leaci, Papa, Prix, PRD 89, 124030, (2014)] 

€ 

SNR ~ h0
Sn

T N1/ 4
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