S. Mastrogiovanni for the LIGO Scientific Collaboration and the Virgo Collaboration

Prospects of continuous gravitational waves searches from Fermi-LAT sources

Outline

Aim of the talk: I would like to give you a general idea on how searches for continuous gravitational waves work.

- Gravitational waves (GW) from neutron stars
- Principles of gravitational waves detection
 - Continuous GW searches
 - Gamma-ray sources and Fermi-LAT
 - GW searches from:
 - Known Pulsars
 - Supernova remnants and pulsar wind nebulae
 - O Unassociated
 - Perspectives
 - What we can infer?
 - Summary and conclusion

Simone Mastrogiovanni

Gravitational waves from neutron stars

Asymmetric neutron stars (NS) are one of the expected sources of gravitational waves

$$h_{+} = h_0 \frac{1 + \cos^2 \iota}{2} \cos(4\pi\nu_{NS}t)$$

$$h_{\times} = h_0 \cos \iota \sin(4\pi\nu_{NS}t)$$

$$h_0 = \frac{1}{r} \frac{16\pi^2 G}{c^4} I_{zz} \nu_{NS}^2 \epsilon$$

In the standard NS configuration we expect a GW at two times the NS rotational frequency

Neutron stars are pretty peculiar astrophysical objects:

- High stability in rotation period (Spin-down $\sim 10^{-12}$ Hz/s)
- For the *pulsars* sub-class it is possible in principle to infer the rotational parameters from electromagnetic observations
- Long-lived coherent signal (>months), depends on glitches
- Are supposed to be very dense (~10¹⁴ g/cm³)
- Spin-down limit (absolute theoretical upper-limit):

$$h_0 \le 8.06 \cdot 10^{-19} \left(\frac{I_{zz}}{kg \, m^2}\right) \sqrt{\left(\frac{\dot{\nu}}{Hz/s}\right) \left(\frac{Hz}{\nu}\right)}$$

This type of GW signal are called continuous gravitational waves

Simone Mastrogiovanni

Principle of GW detection

A crossing GW changes the distance between two test masses. LIGO and Virgo are experiments based on Michelson interferometry suitable to detect GWs

 $I(t) \propto h(t)$

Seems simple...but it's not

Simone Mastrogiovanni

Principle of GW detection

The typical length of Virgo and LIGO science Run is of order of several months, sampled at **4096 Hz**.

Hardware injection in VSR4, Amplitude= 8.4 x 10⁻²⁴ (we can see it)

We expect a signal deeply buried into noise

Simone Mastrogiovanni

 $f_d = f(t) \left(1 + \frac{\vec{v} \cdot \vec{n}}{c} \right)$

Doppler due to the Earth motion: It is needed to know with very high precision the location of the neutron star

Neutron star frequency: It is needed to know with high precision the frequency and its derivatives of the neutron star

$$f(t) = \sum_{n=0}^{\infty} f^{(n)} \frac{(t-t_0)^n}{n!}$$

Fix frequency and spin-down

Fix R.A. and declination

Antenna response: It is needed to know the source position and the interferometer position

$$F_{+}(\theta,\phi) = \frac{1}{2}(1+\cos^{2}\theta)\cos 2\phi$$

$$F_{\times}(\theta,\phi) = \cos\theta\sin 2\phi$$

[Maggiore, 2008]

Fix the interferometer position with respect to the source

Signal buried in noise: Compute the analysis to extract the signal from the noise

Simone Mastrogiovanni

The simplest way to look for cGWs is to search for a monochromatic signal after that all the corrections have been applied.

From the basic theory of signal processing we know that the longer is the coherence time, the better I can see the signal in the spectrum

This procedure is not always suitable for several reasons but the more important is the computational costs of the analysis.

Analyzing 4 months of data means that our frequency and spin-down bins are:

$\delta f \approx 10^{-7} \mathrm{Hz}$ $\delta \dot{f} \approx 10^{-14} \mathrm{Hz/s}$

In order to look for GW we have to explore a 4+N dimensional space (R.A, decl, frequency, spin-down+Spin-down's derivatives)

Targeted searches: Based on the application of a matched filter, the knowledge of all the source parameters is mandatory.

$$h_{min} \approx 10 \sqrt{\frac{S_n(f)}{T_{obs}}}$$

 $h_{min} \approx 30 \sqrt{\frac{S(f)}{T_{coh}}}$

[Astone et al., 2010]

5-vectors pipeline *F-Statistic* pipeline Bayesan Heterodyne pipeline

Directed searches: Apply the matched filter on many shorter data chunks and then combine the detection statistic incoherently.

Directed F-statistic

[Aasi et al, 2016]

All-sky searches: Based on the incoherent combination of several data chunks.

$$a_{min} \approx \frac{\Lambda}{N^{1/4}} \sqrt{\frac{S_n(T_{col})}{T_{col}}}$$

[Krishnan et al., 2004]

Simone Mastrogiovanni

Sky Hough Frequency Hough PowerFlux All-sky *F-stat*

Gamma-ray sources and Fermi-LAT

[Acero et. al, 2015]

Detects gamma-ray in a range of 20 MeV to 300 GeV measuring times energy and directions.

Fermi-LAT collaboration produced 3 source catalogs so far.

The 3rd catalog covers the period from 2008 to 2012 (ApJ Supplement Series, 218:231)

The LAT team distinguish between Associated and Identified sources

Simone Mastrogiovanni

Gamma-ray sources and Fermi-LAT [Acero et. al, 2015]

Identified sources:

Source	Number	Frequency	Position	Search
Pulsar (flag: PSR)	143	Well known	Well known	Targeted
Pulsar Wind Nebula (flag: PWN)	9	Not-known	Known	Directed
Supernova remnant (flag: SNR)	12	Not-known	Known	Directed

Associated sources:

Source	Number	Frequency	Position	Search
Pulsar (flag: psr)	24	Not well known	Known	Narrow-band
Pulsar Wind Nebula (flag: pwn)	2	Not known	Not well known	All-sky
Supernova Remnant (flag: snr)	11	Not known	Not well known	All-sky
Potential pwn or snr (flag: spp)	49	Not known	Not well known	All-sky

Unassociated sources:

Sources for which we have only gamma-rays observation: 1010 Mainly on the galactic plane

Depending on the knowledge of source parameters different searches can done

Simone Mastrogiovanni

SciNeGHE Workshop 20/10/2106

Target searches applied to pulsars for which we have updated ephemeris and the knowledge of the rotational parameters

See C. Palomba's talk.

[Aasi et al, 2014]

Simone Mastrogiovanni

If we have some uncertainties on the rotational parameters or the ephemeris are not updated, narrow-band searches can be applied.

We have applied this typer of searches for 11 known pulsars using O1 data (results under internal review, paper in preparation)

Simone Mastrogiovanni

SciNeGHE Workshop 20/10/2106

If we have some uncertainties on the rotational parameters or the ephemeris are not updated, narrow-band searches can be applied.

We have applied this typer of searches for 11 known pulsars using O1 data (results under internal review, paper in preparation)

Simone Mastrogiovanni

SciNeGHE Workshop 20/10/2106

Moreover with the future runs of the advanced detectors we will be able to beat the spin-down limit for several pulsars in the second *Fermi-LAT pulsars catalog*

Spin-down limit predicted for the low frequency pulsars present in the catalog

Simone Mastrogiovanni

SciNeGHE Workshop 20/10/2106

Moreover with the future runs of the advanced detectors we will be able to beat the spin-down limit for several pulsars in the second *Fermi-LAT pulsars catalog*

Spin-down limit predicted for the low frequency pulsars present in the catalog

Simone Mastrogiovanni

SciNeGHE Workshop 20/10/2106

12/21

GW searches from:

Pulsars are not the only interesting candidates for GW in Fermi-LAT catalogs. There are a lot of sources that are difficult to analyze with the current pipelines but are very promising under a GW point of view.

Supernova Remnant & PWN: For this type of sources the position is accurately known (in most of the cases) but the rotational parameters are completely unknown.

We need to explore 1 sky bin e many frequency bins

Unassociated sources: Besides the fact that they are the 33% of the 3FGL, the unassociated sources are expected to be a large population of NS. This sources have a narrow-localization in the sky and their rotational parameters are unknown.

We need to explore several sky bins and many frequency bins

GW searches from: SNR and PWN (past)

- Analysis performed for 9 SNR observed in many wavelengths using S6 data
- Semi-coherent analysis on chunks long 1800s
- 140 000 CPU hours
- Upper-limit set ever 5 Hz

 $\left(\frac{I_{zz}}{10^{38}\mathrm{kg}}\right)$

[Aasi et al, 2016]

We can estimate the spin-down limit using the age of the remnant

Simone Mastrogiovanni

SciNeGHE Workshop 20/10/2106

 $h_0 \le 1.24 \cdot 10^{-24} \left(\frac{3.8 \text{kpc}}{10^{-24}}\right)$

 $\left(\frac{300 \mathrm{yr}}{\tau}\right)$

GW searches from: unassociated

Fermi -LAT unassociated sources are really interesting.

These sources lie on the galactic plane covering many sky-bins and many of them are present also in the previous catalogs

47 % are expected to be unseen neutron stars

Simone Mastrogiovanni

GW searches from: unassociated

A typical *unassociated* source is the one shown below

Coherence time: 86400 s Max Search frequency: 100 Hz

For this type of sources we would explore about 500 Hz on the frequency band and several sky-bins

For just one source

This type of analysis would be very heavy for a computational point of view with current methods

Simone Mastrogiovanni

GW searches from: unassociated

- A GW search from the galactic center was performed
- Semi-coherent analysis on chunks long 1800s
- 1 milion CPU hours
 Upper limit every 1 Hz- band 20 Hz to 498 Hz

We are currently performing all-sky analysis. No search of GW from the unassociated sources of LAT is ongoing

Simone Mastrogiovanni

Perspectives

We are working to develop new method to analyze Fermi-LAT sources

The new starting point will be the **Band Sampled Data collection** (BSD) (*see Piccini O.J. poster*)

Allows to increase the coherence time in a computational cheap way

Unassociated:

- GW flag in your catalog?
- Longer FFTs to improve the sensitivity
- Incoherent methods in the neighborhood of the source position (e.g. Hough transform)
- Fast follow-up methods
- New type of algorithms ?

SNR and PWN:

- Improvements of semi-coherent methods
- Fast follow-up methods
- New type of algorithms ?

SciNeGHE Workshop 20/10/2106

Simone Mastrogiovanni

What can we infer?

According to standard stellar evolution, we expect O(10⁸) NS be hosted in the Galaxy, but only ~2500 have been observed.

Many of them can be hidden in their supernova remnant (Ex: Cas A, 1987a)
Or totally unseen

NS demography

Infer information on the internal magnetic field through the deformation [Owen et al., 2006]

 Moreover GW can probe the NS internal structure, I.e the equation of state (EOS).

[Read et al., 2009]

Only detection:

- The rotational parameters, i.e. frequency and spin-down
- The position of the source in the sky, hence if a compact object is present in a remnant or in a unassociated source

Studying the signal:

- The amplitude of the GW
- The polarization angle
- The line of sight angle
- Upper-limit on ellipticity

Studying the signal jointly with EM observation:

- Age of the neutron star
- Braking Index study
- Possible mismatches in EM and GW frequencies
- Distance

GW can carry out a lot of information...so let's keep going!

Summary and conclusions

- Continuous gravitational waves are good probes to spot and study NS
- Fermi-LAT pulsars and supernova remnants are good targets for GW searches
- Ourrent pipelines are limited by the computational load (Only 9 supernova remnant were studied so far)
- Output Description of the second s
- Output the set of t
- OHOWEVER MORE WORK IS NEEDED TO DEVELOP DIPELINE AND METHODS SUITABLE TO THE ANALYSIS OF SOURCES WITH SOME UNCERTAINTIES LIKE THE ONES IN FERMI Catalog

Simone Mastrogiovanni

Brace yourself multi-messenger astronomy is coming

Thanks for the attention

Questions?

References

- M. Maggiore, *Gravitational waves Vol.1* (2008)
- P. Astone et al., *Method for narrow-band search of continuous gravitational wave signals,* Phys. Rev. D 89, 062008 (2014)

 \cap

- P. Astone et al., A method for detection of known sources of continuous gravitational wave signals in non-stationary data, Class. Quantum Grav. 27 194016(2010)
- B. Krishan et al., *Hough transform search for continuous gravitational waves*, Phys. Rev. D 70, 082001 (2004)
- · J.S. Read et al., "Constraints on a phenomenologically parametrized neutron-star equation of state", Phys. Rev. D 79, 124032 (2009)
- Acero et al., Fermi Large Area Telescope third source catalog, ApJS 218 23 (2015)
- S. Walsh, "*A comparison of methods for the detection of gravitational waves from unknown neutron stars",* arXiv:1606.00660 (2016)
- B. Owen, "*Detectability of periodic gravitational waves by initial Interferometers*", Class. Quantum Grav. 23 S1
- J. Aasi et al., "Gravitational waves from known neutron stars: results from the initial detector era", ApJ 785 119 (2014)
- J. Aasi et al., "Searches from continuous gravitational waves from nine young supernova remnants", ApJ 813 39 (2015)
- J. Aasi et al., "Directed search for continuous gravitational waves from the Galactic center", Phys. Rev. D 88, 102002 (2013)
 - A. Abdo et al., "The second Fermi-LAT catalog of gamma-ray pulsars", ApJS 208 17 (2013)

Backup slides

Spin-down limit

Assume that all the rotational energy is lost due to GW

$$L_{GW} = \frac{32G}{5c^5} \Omega^6 I_{zz}^2 \epsilon^2$$
$$(2\pi)^2 \nu \dot{\nu} = L_{GW}$$

$$\dot{\nu} = \frac{32G}{5c^4} (2\pi)^4 \nu^5 I_{zz} \epsilon^2$$

Some rotational parameters

	Freq [Hz]	spin-down [Hz/s]
Crab	59.32365204	-7.3883e-10
J0205+6449	30.40958196	-8.9586e-11
J1813-1246	41.60103328	-1.2866e-11
J1813-1749	44.71284639	-1.5000e-10
J1833-1034	32.29409580	-1.0543e-10
J1952+3252	50.58823360	-7.4797e-12
J2043+2740	20.80486277	-2.7415e-13
J2229+6114	38.71531561	-5.8681e-11
Vela	22.37409813	-3.1191e-11
J1400-6326	64.12537215	-8.0017e-11
J2022+3842	41.16008453	-7.2969e-11

Computational efficency

 T_{coh}

Frequency bin =

Supernova remnant search:

1-day coherent time Frequency 100 Hz

2ר

coh

Spin-down bin =

ulsar search:

1-day coherent time Frequency 100 Hz

bin \propto

coh

Computational efficency- Coherence time

[Walsh, 2016]

Targeted and directed searches: This type of searches assume known the position and search for GW for different frequency and spin-down values

Directed searches divide the observation time in shorter data-chunks in order to explore more frequency bins

[Astone et al., 2014]

All-sky searches: Don't use the matched filter technique and explore a wide range in the parameter space

No matched filter, other techniques: Hough transform Correlation Incoherent summation

> Select candidates to follow up

[Krishnan et al., 2004]