Ground based cosmic ray experiments: results and perspectives

Antonella Castellina INAF-OaTo & INFN Torino

11th Workshop on Science with the New generation of High Energy Gamma-ray Experiments October 18-21, 2016 - Pisa, Italy

The experimental challenge

The air shower detectors

Array	g cm-2	Detector	∆E [eV]	Area [km²]	
ARGO	600	RPC hybrid (LLASHO)	0.3-5 10 ¹⁵	0.0056	Ligh altitude experiment
Tibet-ASγ	600	Scintillator/burst detector	1-200 10 ¹⁵	0.0037 [0.5 phase]	 ✓ N_{part} ~ indip of
EasTop	820	scintillator/muon	1-100 10 ¹⁵	0.01	 close to maximum of EAS: low fluctuations
GAMMA	700	scintillator/muon	3-200 10 ¹⁵	0.03	
KASCADE	1020	scintillator/muon	2-90 10 ¹⁵	0.04	energy resolution
CASA-MIA	860	scintillator/muon	0.1-100 10 ¹⁵	0.25	<u>Sea level experiments</u>
Kascade-Grande	1020	scintillator/muon	10 ¹⁶ -10 ¹⁸	0.49	composition Second Second
ІсеТор	680	ice Cher.tanks	10 ¹⁶ -10 ¹⁸	1	exploit longitudinal
Tunka	900	unshielded PMTs	10 ¹⁵ -10 ¹⁸	3	distribution differencie
Yakutsk	1020	scintillator/unshielded PMTs	10 ¹⁵ -10 ¹⁹	~40	
Telescope Array +TALE	880	scintillator+ fluorescence tel.	4 10 ¹⁵ -10 ²⁰	700	
Auger +Infill	840	water Cher.tanks fluorescence tel.	10 ¹⁷ -10 ²⁰	3000	

The knee region

- evidence for a proton knee at E_k=(700 <u>+230) TeV</u> at variance with E_{k(p)} ~ E_k(all-particle)
- *γ* from (-2.56<u>+</u>0.05) to (-3.24<u>+</u>0.36)
- compatible with JH2003 spectrum with proton knee at 1 PeV

Data	σ(E)	σ ^{SYS} (E scale)	σ ^{SYS} (flux)
Hybrid	25%	~ 9.7%	~28%
Analog	15%	5%	20%

 power index for light spectrum steeper wrt allparticle one: E_k(light) < E_k(all)
 heavy component dominates the all particle knee

Antonella Castellina

The knee region - old results

The transition region

Kascade-Grande

	Source of uncertainty	10 ¹⁶ eV	10 ¹⁷ eV	10 ¹⁸ eV
		(%)	(%)	(%)
	Intensity in different angular bins (attenuation)	-0/+6.5	10.9	21.3
	Energy calibration and composition	10.3	5.8	13.4
	Slope of the primary spectrum	4.0	2.0	1.9
	Reconstruction (core and shower sizes)	0.1	1.4	6.5
	Total	-11.1/+12.8	12.6	26.1
	Artificial spectrum structures (extreme cases)		<10	
•	Hadronic interaction model (EPOS-QGSJet)	-5.3	-16.9	-14.6
	Statistical error	0.6	2.7	17.0
	Energy resolution (mixed composition)	24.7	18.6	13.6

- (heavy+medium) component knee
 - ~10^{16.88} eV compatible with previous result
- **light component hardening** ~10^{17.08} eV, $\Delta \gamma$ =0.46 (from -3.25 to -2.79) —> 5.8 σ : start of the transition ?

Antonella Castellina

The transition region

IceTop

- KG features confirmed in both standalone and combined analysis
- Light spectra steeper
- problem with iron component?

Systematics: +9.6% -12.5% (dominant effect light yield in the in-ice detectors)

Tunka

- features in agreement with KG experimental results
- agreement with TALE spectrum between 2 10¹⁷ and 10¹⁸ eV
- •knee : p, He
- •heavy knee at ~ 7 10¹⁶ eV
- EG light component growing above 4-5 10¹⁶ eV

The UHE region

Telescope Array

TALE-SD array (103 SDs, 70km²)

TALE-FD

ALE-FD

TA-SD array (507 SDs, 700km

400 m spacing 40 SDs

> 600 m spac 36 SD

> > 27 SDs

The UHE region

17.5

17.0

18.0

E > 1 EEV24 TELESCOPE FOV 1-30 FD

• ankle observed at Eankle = 4.8 10¹⁸ eV • cut-off clearly observed (>20σ significance).

Antonella Castellina

Ground based cosmic ray experiments: results and perspectives

19.0

18.5

 $\log_{10}(E/eV)$

19.5

21 October 2016

- data better reproduced with a mixed composition
- p fraction increases to >60% at the ankle, drops near 10¹⁹ eV, maybe rising again at higher energies —> but EG according to anisotropy limits !
- no significant contribution of Fe

Antonella Castellina

The UHE region - interpretation

- Pure proton, $E > 10^{18.2} \text{ eV}$
- Injection spectrum E⁻, E_{max} =10²¹ eV
- Source density $(1 + z)^m$ (per comoving unit volume)
- Energy losses with CMB and IRB.
- Propagation code: TransportCR [checked by CRPropa]
- no magnetic fields

- data compatible with pure proton model
 γ= 2.18- 0.14 + 0.08 (stat.+sys.)
- suppression due to GZK cutoff

- identical sources homogeneously distributed
- Injection of H,He,N,Fe

• injection spectrum $\frac{\mathrm{d}N_{\mathrm{inj},i}}{\mathrm{d}E} = \begin{cases} J_0 p_i \left(\frac{E}{E_0}\right)^{-\gamma}, & E/Z_i < R_{\mathrm{cut}} \\ J_0 p_i \left(\frac{E}{E_0}\right)^{-\gamma} \exp\left(1 - \frac{E}{Z_i R_{\mathrm{cut}}}\right), & E/Z_i > R_{\mathrm{cut}} \end{cases}$

- Photodis.cross section + EBL (far IR)
- Propagation code: CRPropa,SimProp
- no magnetic fields

- hard injection (γ~1) and low cutoff (Rcut<10^{18.7} eV) favoured
- $\gamma \sim 2$ strongly disfavoured by X_{max} distribution width

The UHE region - PAO and TA comparison

Energy spectrum

- very good agreement for Eankle
- different interpretation for the suppression
- difference not due to different declination

	TA [16]	Auger [21]
E_{ankle} (EeV)	5.2 ± 0.2	$4.8 \pm 0.1 \pm 0.8$ (syst)
$E_{1/2}$ (EeV)	60 ± 7	$24.7 \pm 0.1 \stackrel{+8.2}{_{-3.4}}$ (syst)
$\Delta E/E$	21%	14%

PAO Composition in TA reconstruction chain:

- TA reconstruction of events simulated according to PAO Xmax distribution
- average X_{max} agrees within uncertainties

TA cannot distinguish between "proton" or "Auger mixed" composition with the current level of uncertainties

Multimessengers

From primary p and heavy nuclei production, acceleration and propagation, we can expect neutral primaries

γ

- p pair production
- pion photo production ($E\gamma \sim 0.1E_p$)
- neutron decay
- top-down models
- in EM cascades by pair production, inverse Compton scattering

Travel distance ~ 4.5/EeV Mpc

Galactic + EG

n

- pp interaction near the source
- pion photo production (E γ ~0.8Ep)
- neutron decay
- neutron decay

τ~886 s

Travel distance ~ 9.2/EeV kpc

Galactic sources only

• top-down mechanisms

unattenuated

Up to cosmological distances

EeV γ and n point sources

Photon point sources

- Protons near the ankle produce photons ~ 1 EeV : can we find them?
- as the energy flux in TeV γ rays exceeds 1 eV cm⁻² s⁻¹ for some sources (CenA, GC) with this energy spectrum, we expect similar flux at EeV (as sources with spectrum ~ E⁻² put the same energy flux/decade)

No point sources of EeV photons is found. For $d\phi/dE \sim E^{-2}$

 $\phi_{\gamma} < 0.25 \text{ eV cm}^{-2} \text{ s}^{-1}$

well below expectations

- No Galactic sources of protons IF
- -> they are not transient
- -> they do not emit in jets towards Earth
- -> they are too faint

[[]Aab et al., ApJ 789 (2014) 160]

Photon flux

VHE

- new upper limits from Kascade-Grande
- the limits on TeV to PeV diffuse γ-ray flux can set constraints on the galactic or EG origin of the IceCube excess

[K.Feng et al., ICRC2015]

UHE

- top-down models highly disfavoured
- first constraints to the most optimistic predictions for cosmogenic photon fluxes
- 4 times lower or 2 order of magnitude fluxes are predicted for p or Fe primaries if Vinj~-2 and Emax~10²¹ eV at the sources
- observations cover both hemispheres

[C.Bleve et al., arXiv:1509.03732]

Antonella Castellina

v detection in EAS arrays

- maximum sensitivity where cosmogenic v flux peaks
- first EAS detector reaching factor ~4 below WB
- strong constraints to models with proton primaries and strong evolution with redshift

Auger data do not yet constrain neutrinos from heavy primaries

search limited by exposure

[A.Aab et al., PRD91 (2015) 092008]

Antonel	la Caste	llina
---------	----------	-------

Neutrinos and UHECRs

- HE extraGal. neutrinos can be produced by protons of 10¹⁵-10¹⁷ eV
- sources of UHECRs >50 EeV can produce also lower energy CRs

Different analyses are employed to investigate the possible correlations between 318 UHECRs in Auger+TA with IceCube neutrino events

- \subseteq all results below 3.3 σ
- with IC cascades: correlation analysis: p 5x10⁻⁴, at angular scale ~22⁰
- higher correlations in the region of TA hot spot an close to the Supergalactic Plane (PAO warm spot)

[IceCube, TA, Auger Coll., JCAP 01 (2016) 037]

- if suppression of UHECRs flux due to GZK, maybe just a % fraction of HE neutrinos come from the same (nearby) sources producing UHECRs
- if burst-like sources, neutrinos arrive long before UHECRs, correlation not feasible
- sources producing HE neutrinos could be unable to produce UHECRs

But

21 October 2016

UHEv follow-up of GW events

GW150914 & GW151226

- merger of binary black holes
- 3 and 1 Mo released in GW
- D_{GW} ~ 410 and 440 Mpc
- position few 100 deg²

[LIGO & Virgo Coll., PRL116 (2016) 061102 and 241103]

Em counterpart improbable, but

- Fermi GBM: transient source at 50 keV, 0.4s delay wrt GW150914 [V.Connaughton, arXiv:1602.07352]
- different models predict UHE neutrino production

Auger neutrino selection

- evt +/- 500 s around GW evt
- evt +1 day after GW evt (GRB afterglow in UHE v)

No UHE neutrino candidate found

Limits on radiated energy in UHEv (declination dependent) at $E>10^{17}$ eV

- < (0.5, 3) M_☉ released from both GW150914 and GW151126
- first limit in EAS

[Auger Coll., arXiv:1608.07378, subm.PRD]

Example:

UHECRs and neutrinos from BH-mergers [K.Kotera & Silk, ApJL823 (2016) L29]

Transient sources can provide an environment for production and acceleration of UHECRs,

- ✓ rare transients (~ 1 Gpc⁻³ yr⁻¹) could be enough to produce a dense population
- ✓ BH mergers should be surrounded by metalrich debris and able to accelerate heavy nuclei

Constraints from Pierre Auger:

- limit on source number density
 [P.Abreu et al., JCAP 1305 (2013) 009]
- heavier composition at UHE
 [A.Aab et al., PRD90 (2014) 122006]

The current view

Antonella Castellina

Ground based cosmic ray experiments: results and perspectives

19

Conclusion

Galactic Cosmic Rays

✓ all experiments see the all-particle knee ~3-4 PeV

✓ ARGO, Tibet: proton knee at ~700 TeV

✓ Kascade-Grande, Tunka : E_{knee}(p) ~3 10¹⁵ eV and E_{knee}(Fe)=26 x E_{knee}(p)~80 PeV

but

- analysis based on indirect extraction of information from EAS: strong dependence on models of hadronic interactions
- different definition of elemental groups
- difficult evaluation of systematic uncertainties

Open issues

Revision of ideas about particle acceleration up to PeV? Is there an additional component of GCRs?

Transition region and above

✓ Kascade Grande: E_{knee}(Fe)~8 10¹⁶ eV, light hardening ~10¹⁷ eV

✓ IceTop measurements up to $\sim 10^{17}$ eV: too large fraction of iron

 \checkmark constraints on elemental fractions from Auger >6 10¹⁷ eV

PAO, TA good agreement in the ankle region, different interpretation of suppression

PAO, TA different conclusion on composition, but agreement within systematics

constraints from Auger LSA UL

multimessengers needed • proton dip, ankle, mixed composition models are the main alternatives

Open issues

can we dismiss the dip model?

is the suppression due to propagation or source effects?

Antonella Castellina

Example : the dip model

Signatures

✓ proton composition
 ✓ ankle and E_{1/2}
 ✓ measure of the cosmogenic v flux

 \checkmark measure of the diffuse γ flux

Serious problems

- ✓ Auger composition (~40% p below ankle)
- And spectra and low cutoff suggested by Auger spectrum+comp
- ✓ measure of the cosmogenic v flux (IceCube)
- √ measure of the diffuse γ flux [(Fermi-LAT, ApJ799

(2015) 86] but see also arXiv:1606.09293)

Multi-messenger approach to break the degeneracy wrt models of the spectrum alone and to reach conclusion independent of composition

UHECR spectrum from TA + IceCube limit on cosmogenic neutrinos

[J.Heinze et al., arXiv:1512:05988]

Test of dip model : UHECRs >10¹⁹ eV are EG protons with a **3D** parameter space scan

[$\gamma_{injection}$, $E_{max}(p)$, source evolution parameter m]

- the minimum "TA allowed" cosmogenic v flux is in tension with IceCube upper limit at more than 95% CL
- hard spectra, strong source evolution and low Emax(p) are favored wrt the GZK scenario
- the proton dip model is strongly challenged

Future - 1

hybrid Tibet experiment

- high accuracy in the light spectrum determination <u>between 50 TeV and 10 PeV</u> <u>accurately</u>..
- energy resolution at 1 PeV better than 12%
- expected systematics on the flux ~30% (mostly from hadr.int.model dependence)

IceTop-2

- 10 km³ in-ice array with 10 km² IceTop-2 on top
- \Rightarrow energy range increased by a factor 3
- coincident events increased by factor 50
- 100 km2 veto EAS array (muon LDF)

"IceTop-2" Surface Veto Array HEA (High-Energy Array)

LLHASO

- 1 km2 hybrid array at 4410 m asl
- gamma ray astronomy
- cosmic rays from 300 GeV to 1 PeV
- Cherenkov+fluorescence telescopes

Tunka-Grande

- Tunka-133 + 228 detectors of Kascade-Grande
 - + 152 underground muon detectors

Antonella Castellina

Future -2

AugerPrime [arXiv:1604.03637]

- Origin of the flux suppression and mass composition at UHE
- ✓ proton contribution >10% above 6x10¹⁹ eV, particle astronomy?
- ✓ explore particle physics beyond the reach of LHC by
- ✓ extension of the composition measurements into the extreme energy range above 5 x 10¹⁹ eV
- ✓ increase of data quality (timing, dynamic range...)
- ✓ extension of FD on-time

TAx4 [E.Kido, UHECR2016]

- ✓ Origin of the flux suppression and mass composition at UHE
- \checkmark confirm the hot spot with >5 σ significance
- ✓ search for point sources
- ✓ extension of statistics for composition at UHE
- √ flux limits on UHE γ and v

500 additional scintillato counters, 2.08 km spacing + 2 new FD ~3000 km² area

Antonella Castellina

BACKUP SLIDES

Large Scale Anisotropy

Antonella Castellina

21 October 2016

25

Small Scale Anisotropy

Direct + indirect measurements

Antonella Castellina

Ground based cosmic ray experiments: results and perspectives

27

Auger : declination dependence of energy flux

- no indication of a declination-dependent flux
- differencies between Auger and TA in the suppression region not explained
- the differences found between the measurements in two separate declination bands are compatible with the variations expected from a dipolar modulation of the flux.

γ detection in EAS arrays

γ EAS develop deeper in atmosphere: larger Xmax

¥ γ EAS look young: larger rise time, smaller radius of curvature

Fraction of time in one day GW150914 & GW15126 are visible in the Earthskimming & Downward-going channels

Constraints are declinationdependent

Pierre Auger Collaboration, arXiv:1608.07378 [astro-ph]

30

0.40

Physics goals of AugerPrime

Origin of the suppression

Antonella Castellina

31

Physics goals of AugerPrime

Set of 454 Auger data : $E > 4 \times 10^{19}$ eV, random Xmax according to scenario 1. 10% protons added, ½ coming from AGNs within 3°

32