Neutrino Astronomy with IceCube

Thorsten Glüsenkamp, FAU Erlangen SciNeGHE 2016, Pisa, Oct. 19th

Atmospheric backgrounds

• Muons: > 2000 / s Spectrum @ high E

Atmospheric backgrounds

- Muons: > 2000 / s
- Neutrinos: ~ 70000 / year

The astrophysical flux

image adapted from Kowalski, Neutrino 2016

image adapted from Kowalski, Neutrino 2016

starting events: further developments

- Skymap (4 years) IceCube, ICRC, 2015
 - no galactic plane clustering (2.5% pvalue)

starting events: further developments

- Skymap (4 years) IceCube, ICRC, 2015
 - no galactic plane clustering (2.5% pvalue)
- Lower E-Threshold ~ 5 TeV (refined veto/selection) IceCube, PRD, 2015

starting events: further developments

- Skymap (4 years) IceCube, ICRC, 2015
 - no galactic plane clustering (2.5% pvalue)
- Lower E-Threshold ~ 5 TeV (refined veto/selection) IceCube, PRD, 2015
- HE-contained (+ <u>partially contained</u>) showers

Starting events: further developments

The astrophysical flux: power-law deviations?

The highest energy neutrino ever detected

- 4.5 \pm 1.2 PeV muon (ν -Energy higher!)
- Chance to be of atmospheric origin: 0.005%

The highest energy neutrino ever detected

- 4.5 \pm 1.2 PeV muon (ν -Energy higher!)
- Chance to be of atmospheric origin: 0.005%

Flavour constraints: combining channels

Global fit using starting event + throughoing muons (2year)

Pure electron neutrinos
@ sources excluded
@ 3.7 σ

What are (not) the sources?

7 year point source search

7 year point source search

The big picture

adapted from M. Kowalski, Neutrino 2016

The big picture

adapted from M. Kowalski, Neutrino 2016

The big picture

- Astrophysical neutrinos: evidence in **3 independent** channels
 - Starting events (> 5 σ)
 - Partially contained showers (~ 3 σ)
 - Throughgoing Muons (> 5 σ)

- Astrophysical neutrinos: evidence in **3 independent** channels
 - Starting events (> 5 σ)
 - Partially contained showers (~ 3 σ)
 - Throughgoing Muons (> 5 σ)
- Isotropic, gal. plane clustering 2.5 % p-value
- Some tension for simple power-law (~ 2-3 σ)
- 1:0:0 flavor ratio @ sources excluded @ 3.7 σ

- Astrophysical neutrinos: evidence in 3 independent channels
 - Starting events (> 5 σ)
 - Partially contained showers (~ 3 σ)
 - Throughgoing Muons (> 5 σ)
- Isotropic, gal. plane clustering 2.5 % p-value
- Some tension for simple power-law (~ 2-3 σ)
- 1:0:0 flavor ratio @ sources excluded @ 3.7 σ
- Bulk emission: GRBs (< 1%)

Fermi 2nd catalog blazars (< 30% - model independent) GeV-blazars in general (< 10% - $\nu \sim \gamma$)

Still allowed: Radio-Galaxies, choked GRBs, Supernovae, gal. Contribution..

• E.M radiation + global modelling crucial for understanding!!

Thank you!