

The Pierre Auger Observatory ultra-high energy neutrino follow-up of the LIGO GW events

Carla Bleve¹ for the Pierre Auger Collaboration²

¹INFN and Department of Mathematics and Physics, University of Salento, Lecce, Italy ²Full author list http://www.auger.org/archive/authors_2016_08.html

The 2015 LIGO gravitational waves events

- → Breakthrough observation of GW events with the LIGO Advanced interferometer
- → GW150914 and GW151226 (and LVT151012 candidate)
- → Inferred source: coalescence of a BH binary @ 410 and 440 Mpc
- → Position: few 100 deg² uncertainty
- \rightarrow Energy released in form of GW:
 - ~ 3 and 1 solar masses

Image: LIGO/Leo Singer (Milky Way image: Axel Mellinger)

LIGO & Virgo Coll. PRL 116, 061102, 241102 & 241103 (2016)

No electromagnetic counterpart generally expected from BH mergers

UHE vs from BH merger events?

 \rightarrow Fermi GBM 3 σ report of a 1s transient signal 0.4 s after GW150914 and consistent position

- → Models predicting emission of UHE neutrinos:
 - UHECR accelerated by Fermi mechanism if relic magnetic field and debris from BH formation => emission of UHE neutrinos and photons *Kotera & Silk, ApJL 823, L29 (2016)*
 - if accretion disk present, proton acceleration up to ~10 EeV energy by electric fields in disk dynamo,
 UHE neutrinos from interaction with bkg photons and gas around BH Ancordoqui, PRD 94, 023010 (2016)

Search for UHE v in coincidence with GW events with the Auger SD (E>100 PeV)

Inclined showers and UHE neutrinos

→ Protons & nuclei initiate inclined showers high in the atmosphere.

Shower front at ground:

- electromagnetic component absorbed in atmosphere
- mainly muons remaining
- → Neutrinos can initiate deep showers close to ground. Shower front at ground:

electromagnetic + muonic components

 Search for neutrinos
 ⇒ look for inclined showers with electromagnetic component

Sensitivity to all flavours and channels

Down-going high angle (2, 4 and 5) DGH 75°-90°

Earth-skimming (3) ES 90°-95°

6

ν

Selection of inclined events

(3) Reconstructed zenith angle (DGH channel only)

	Earth-Skimming $(90^\circ, 95^\circ)$	Down-going High $(75^\circ, 90^\circ)$
(1)	L/W > 5	L/W > 3
(2)	$\langle V \rangle \in (0.29,~0.31) \mbox{ m ns}^{-1}$	$\langle V \rangle~<~0.313~{ m m~ns^{-1}}$
(2)	$\mathrm{RMS}(V) < ~0.08 \mathrm{~m~ns^{-1}}$	$\mathrm{RMS}(V)/\langle V \rangle < 0.08$
(3)	_	$ heta_{ m rec}>75^\circ$

Identifying electromagnetic shower fronts

To find neutrinos => search for signals extended in time in inclined events.

Searching for UHE ν in coincidence with GW events

- → Neutrino search method already defined and applied to the data collected up to June 2013 (upper limits to the diffuse flux and steady point-like sources of UHE neutrinos) *Pierre Auger Coll., PRD 91, 092008 (2015) & ApJL 755, L4 (2012)*
- → Energy range: E > 100 PeV complementary to IceCube-Antares GW follow up LIGO&VIRGO, IceCube, ANTARES Coll., PRD 93, 122010 (2016)
- → Earth-Skimming and Downward-Going neutrino selection applied to data in spacial and temporal proximity to GW150914, GW151226 (and LVT151012).

Time coincidence with GW events: coverage

Sky map of visibility time fraction in 1 sidereal day

<u>No neutrino candidate</u> found in the 1 day window after any GW events in both search channels

Constraints to UHEv emission declination dependent

Constraints to the energy radiated in UHEν for GW150914 (Ε >10¹⁷ eV)

3

Constraints to the energy radiated in UHEν for GW151226 (Ε >10¹⁷ eV)

Conclusions

- Auger follow up of 2015 LIGO gravitational-wave events
 - → search for UHE neutrinos in temporal and spatial proximity with LIGO GW events
 - $\rightarrow\,$ no neutrino candidate found
 - → first constraints at $E_v > 10^{17} eV$ (complementary to IceCube)
- In <u>future</u> more GW events expected
 - → closer, brighter or produced by other sources more likely to produce UHE neutrinos
 - → UHE neutrino (and photons) counterparts if observed by Auger can help pinpointing the location of the source

Backup

Identification of UHE neutrinos in Auger data

Identification criteria applied "blindly" to the search data set => No candidates found in Earth Skimming or Downward-going

Neutrino exposure calculation

Upper limit to the number of neutrinos: Feldman-Cousins + Conrad (includes uncertainties in the exposure calculation)

```
Upper limits
for a k E<sup>-2</sup> spectrum:
k^{90\%} = \frac{N^{90\%}}{\int E_{v}^{-2} \mathcal{E}_{tot}(E_{v}) dE_{v}}
```


90% C.L. in the energy range 0.1 - 25 EeV

Auger limit constrains models with proton primaries & strong evolution with redshift

Auger constraints on models

- Kotera & Silk (ApJLett 823, L29, 2016): events such as GW1501914 can account for UHECR above 10¹⁹ eV
 - sufficient power to accelerate CR up to 10²⁰ eV (if B_{field} > 10¹¹ G)
 - with < 3% of energy released in GW: UHECR energy budget achieved
- UHEv if BHs surrounded by debris where pγ interactions occur.

Upper limit to **diffuse** UHE neutrino flux from BH mergers:

above Auger limit

E²dN/dE ~ 6.4 x 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹ (Auger)

Implications:

- optical depth to py SMALLER than 1
- ONLY a fraction of energy in protons goes into charged pions -> neutrinos
- ONLY a fraction of luminosity extracted from BH goes into UHECR acceleration