

Fermi-LAT Observation of GW events

Nicola Omodei Stanford University & KIPAC

G. Vianello, J. Racusin, E. Burns, A. Goldstein, V. Connaughton for the Fermi LAT collaboration

The Discovery

Sermi

Gamma-ray Space Telescope

> February 11, 2016, the LIGO Scientific Collaboration and Virgo Collaboration teams announced that they had made the first observation of gravitational waves, originating from a pair of merging black holes using the Advanced LIGO detectors.

The Discovery

Sermi

Gamma-ray Space Telescope

> February 11, 2016, the LIGO Scientific Collaboration and Virgo Collaboration teams announced that they had made the first observation of gravitational waves, originating from a pair of merging black holes using the Advanced LIGO detectors.

GW and EM signal

Sermi

Gamma-ray Space Telescope

GW astronomy vs multi messenger astronomy

Binary System Type	BH-BH	NS-BH	NS-NS
GW signal ?	Yes!	Predicted	Predicted
GW Detection Rate (from data)	~1/month	UL from O1: (<3600 Gpc ⁻³ yr ⁻¹)	UL from O1: (<12600 Gpc ⁻³ yr ⁻¹)
EM signal	Not expected if system is isolated	Predicted (sGRB)	Predicted (sGRB)

Upper limits on the rates of binary neutron star and neutron-star--black-hole mergers from Advanced LIGO's first observing run (arXiv:1607.07456)

- Search for GW signal for each "GRB-like" signal detected in EM counterpart
 - The EM localization can be used as a prior for GW searches;
 - Most of the GRB events are outside the VIRGO/LIGO volume;
 - Several trials involved in the search;

Search for EM counterpart of GW signal

- Large localization implies large number of trials;
- The precise trigger time information reduce the number of trials;
- Large field of view instruments are optimal;

The Fermi Gamma-Ray Space Telescope

Large AreaTelescope (LAT) 20 MeV - >300 GeV

Gamma-ray Burst Monitor (GBM) Nal and BGO Detectors 8 keV - 40 MeV

Spacecraft Partner: General Dynamics

Nicola Omodei – Stanford/KIPAC

The Fermi Gamma-Ray Space Telescope

Large AreaTelescope (LAT) 20 MeV - >300 GeV

Gamma-ray Burst Monitor (GBM) Nal and BGO Detectors 8 keV - 40 MeV

pitch = 228 μ m 8.8 10⁵ channels

Csl Calorimeter hodoscopic array (8 6.1 10³ channels

LAT: 4 x 4 modular array 3000 kg, 650 W 20 MeV - 300 GeV

ACD

segmented

scintillator tiles

International collaboration

sermi

Gamma-ray Space Telescope

Spacecraft Partner:

General Dynamics

The Fermi Gamma-Ray Space Telescope

Large AreaTelescope (LAT) 20 MeV - >300 GeV

Gamma-ray Burst Monitor (GBM) Nal and BGO Detectors 8 keV - 40 MeV

GBM:

- Most prolific detector of sGRB (~40/yr)
- Detect only the prompt emission

LAT:

- Fewer sGRB (~2/yr)
- Can detect the high-energy afterglow

Following up LIGO events

 3 GW events announced by the LIGO/VIRGO Collaboration

Dermi

Gamma-ray Space Telescope

- GW150914, LVT151012,
 GW151226, <u>all associated to BH-BH mergers</u>
- BH-BH mergers are not expected to produce EM radiation. Keeping that in mind, and acknowledging that <u>surprises</u> and <u>serendipitous</u> discoveries are not new in astrophysics, we searched our data performing different analysis:
 - Automated Searches
 - Specific searches in the LIGO contours

From LVC probability maps to LAT analysis

- Form
- We developed a novel technique (Vianello, et al.) to search for EM counterpart in LAT data starting from LIGO probability maps
 - -LVC releases probability maps (in HELPix).

Gamma-ray Space Telescope

- -We downscale the maps to match the Fermi LAT PSF (~4 degrees at 100 MeV)
- -We center a ROI in each pixel (p>0.9), and we run standard likelihood analysis (Unbinned)
- -We adopt several timescales to be sensitive to transients of different duration

Coverage

Time since trigger (ks)

ermi

Gamma-ray Space Telescope

> For **GW150914** the coverage was very bad, in fact we start observing the region of the GW event only 4ks after the trigger.

For **LVT151012** and **GW151226**, the

coverage was much better: **50%** and **30%** of the GW region was covered **at the time of the trigger**. In 8ks and 10ks

In 8ks and 10ks after the GW trigger the entire probability map is covered

Different time windows for the LAT Analysis

Gamma-ray Space Telescope

	GW150914	LVT151012	GW151226
Optimized, Fixed, Short	4.4-4.5 ks	±10 s	±10 s
Optimized, Fixed, Long	10 ks	8 ks	1.2 ks - 10 ks
Optimized, Adaptive	Adaptive (±10 days)	Adaptive (±10 days)	Adaptive (±10 days)
Automatic	6 h, 1day, 1 week	6 h, 1day, 1 week	6 h, 1day, 1 week

No significant excess was detected in any of our searches (therefore, we compute a series of flux upper limits)

Sermi

Gamma-ray Space Telescope

• For **GW150914** we calculate UL map for the fixed time window search (from T0+4400, T0+4500).

 We developed a fully bayesian method to calculate a "global" UL, using the probability map as prior (and using Markov-Chain Monte Carlo to marginalize the posterior probability) These UL can be used to constrain models <u>if the location of the</u> <u>GW event is unknown</u>

ermi

Gamma-ray

- If GW events have similar behaviors of sGRB detected by the LAT, they would have been detected within tens to hundreds of seconds;
- But: the proximity of these events makes them very rare;
- Also beaming is important;

Sermi

- We compute Flux LAT upper limit maps.
- These upper limits depend on the location of the pixel in the sky, which also determines the interval of time we used in our analysis.
 - -The colors of the horizontal lines in the last panel matches the colors of the pixels in the second panel.
- These UL can be used to constrain models <u>if the</u> <u>location of the GW event is known</u> (for example from its detection by some other facility)

Sermi

Gamma-ray

- We compute Flux LAT upper limit maps.
- These upper limits depend on the location of the pixel in the sky, which also determines the interval of time we used in our analysis.
 - -The colors of the horizontal lines in the last panel matches the colors of the pixels in the second panel.
- These UL can be used to constrain models <u>if the</u> <u>location of the GW event is known</u> (for example from its detection by some other facility)

Sermi

- We compute Flux LAT upper limit maps.
- These upper limits depend on the location of the pixel in the sky, which also determines the interval of time we used in our analysis.
 - -The colors of the horizontal lines in the last panel matches the colors of the pixels in the second panel.
- These UL can be used to constrain models <u>if the</u> <u>location of the GW event is known</u> (for example from its detection by some other facility)

Sermi

Gamma-ray

- We compute Flux LAT upper limit maps.
- These upper limits depend on the location of the pixel in the sky, which also determines the interval of time we used in our analysis.
 - -The colors of the horizontal lines in the last panel matches the colors of the pixels in the second panel.
- These UL can be used to constrain models <u>if the</u> <u>location of the GW event is known</u> (for example from its detection by some other facility)

Sermi

- We compute Flux LAT upper limit maps.
- These upper limits depend on the location of the pixel in the sky, which also determines the interval of time we used in our analysis.
 - -The colors of the horizontal lines in the last panel matches the colors of the pixels in the second panel.
- These UL can be used to constrain models <u>if the</u> <u>location of the GW event is known</u> (for example from its detection by some other facility)

Results - GW150914 - GBM

Dermi

Gamma-ray Space Telescope

GBM detectors at 150914 09:50:45.816 +1.024s

Model-dependent count rates with maximized SNR for a modeled source. Green points are significant emission, red is the 1.024s average, and blue points were used in the background fit.

Flux GBM (10 keV - 1 MeV) = $2.4x10^{-7}$ erg/cm² ($2.7x10^{-6}$ Msol) in tension with Integral ACS Upper Limit (100 keV - 100 MeV) = $1.3x10^{-7}$ erg/cm² ($1.5x10^{-6}$ Msol)

See Savchenko et al. 2016, Greiner et al. 2016.

GBM - LVT151012 & GW151226

Sermi

Gamma-ray Space Telescope

- GBM: 150914: if real, would be quite weak (given the proximity, it is likely sub-luminous GRB);
- 80% of the GRB fluxes are compatible with the flux upper bound derived by the GBM analysis;

Putting in the context...

What about the GW150914-GBM?

Gamma-ray Space Telescope

- After the LIGO discovery and the claim of a weak signal in the GBM: Numerous merger models with EM emission components proposed;
- <u>EM counterpart</u>: extraction of energy and angular momentum of the merging BHs via the Blandford-Znajek mechanism (Blandford & Znajek 1977).
 - Hard to make EM radiation if the system is isolated (BBH acts as a "blender")
 - BBH system needs a disk, a common envelope (see Woosley, 2016 or Janiuk et al. 2016, Perna et al. 2016, Murase 2016) or a single star progenitor forming a BBH merger (Loeb et al 2016)
 - Lyutikov 2016, Murase et al. 2016: not really working with stellar-mass BH with GW150914-GBM luminosity
- What does the <u>non detection</u> of LVT151012 and GW151226 tell about GW150914-GBM?
 - If we assume that all BBH mergers produce sGRB-like signals, the GBM might reasonably not detect them for four reasons:
 - Outside the field of view (only 68% and 83% of the LIGO localization map was in the GBM field of view)
 - Higher background rate (3% and 18% higher). LVT151012 is also 3 time further.
 - Collimation of the EM-jet (only 15% 30% toward the Earth)
 - Fainter objects (if EM luminosity scales with the progenitor mass, for example.)

More events are needed: GW astronomy -> Multi-messenger astronomy

Conclusions

Gamma-ray Space Telescope

- We have set up a series of tools to monitor and followup with Fermi-LAT GW events triggered by LIGO/VIRGO
- Successfully applied to Observing Run "O1":
 - -Fermi-LAT Observations of the LIGO Event GW150914 (Ackermann et al. 2016, astro-ph:1602.04488);
 - -Searching the Gamma-ray Sky for Counterparts to Gravitational Wave Sources: Fermi GBM and LAT Observations of LVT151012 and GW151226 (Racusin et al. 2016, astro-ph:1606.04901);
 - –Paper describing the details of the methodology (Vianello, Omodei & Chiang arXiv:1607.01793);
- No LAT counterpart detected so far: flux upper limits derived to be used to constrain models;
- Only a larger statistic will help to understand the EM nature of these objects;
- Looking forward for NS-NS/NS-BH events;
- Excitement for the new LIGO Observing Run "O2" and looking forward for <u>VIRGO</u>!!

Back up

Nicola Omodei – Stanford/KIPAC

How to help followup campaign

Adaptive interval over long time widow

- For 150914 we calculate TS maps in 9 partially overlapping regions orbit-by-orbit (adaptive interval) over ling period of time (+/- 30 days)
 - Large number of trials!

- Due to the large number of trials, high values of TS can be obtained by random coincidence of LAT events
 - -Monte Carlo simulation are essential to study the significance of these excess
 - -Our study shows that the distribution of TS obtained from MC data matches perfectly the observed once: no statistically significant excess

<u>Left</u>: most significant excesses found on searches over +/- 30 days. <u>Top</u>: Data-MC comparison

tanford/KIPAC

 The magnetic field is extremely high , and would imply a too high accretion rate (Lyutikov, 2016)

Gamma-ray Space Telescope

Fermi-LAT Observations of the LIGO Event GW150914

2 M. Ackermann¹, M. Ajello², A. Albert³, B. Anderson^{4,5}, M. Arimoto⁶, W. B. Atwood⁷, M. Axelsson^{8,9} L. Baldini^{10,3}, J. Ballet¹¹, G. Barbiellini^{12,13}, M. G. Baring¹⁴, D. Bastieri^{15,16}, J. Becerra Gonzalez^{17,18}, R. Bellazzini¹⁹, E. Bissaldi²⁰, R. D. Blandford³, E. D. Bloom³, R. Bonino^{21,22}, E. Bottacini³, T. J. Brandt¹⁷, J. Bregeon²³, R. J. Britto²⁴, P. Bruel²⁵, R. Buehler¹, T. H. Burnett²⁶, S. Buson^{17,27,28,29}, 6 G. A. Caliandro^{3,30}, R. A. Cameron³, R. Caputo⁷, M. Caragiulo^{31,20}, P. A. Caraveo³², J. M. Casandjian¹¹, 7 E. Cavazzuti³³, E. Charles³, A. Chekhtman³⁴, J. Chiang³, G. Chiaro¹⁶, S. Ciprini^{33,35}, J. Cohen-Tanugi²³, L. R. Cominsky³⁶, B. Condon³⁷, F. Costanza²⁰, A. Cuoco^{21,22}, S. Cutini^{33,38,35}, F. D'Ammando^{39,40}, 8 F. de Palma^{20,41}, R. Desiante^{42,21}, S. W. Digel³, N. Di Lalla¹⁹, M. Di Mauro³, L. Di Venere^{31,20}, A. Domínguez², P. S. Drell³, R. Dubois³, D. Dumora³⁷, C. Favuzzi^{31,20}, S. J. Fegan²⁵, E. C. Ferrara¹⁷ 10 Franckowiak³, Y. Fukazawa⁴³, S. Funk⁴⁴, P. Fusco^{31,20}, F. Gargano²⁰, D. Gasparrini^{33,35}, N. Gehrels¹⁷, 11 Giglietto^{31,20}, M. Giomi¹, P. Giommi³³, F. Giordano^{31,20}, M. Giroletti³⁹, T. Glanzman³, G. Godfrey³, 12 G. A. Gomez-Vargas^{45,46}, J. Granot⁴⁷, D. Green^{18,17}, I. A. Grenier¹¹, M.-H. Grondin³⁷, J. E. Grove⁴⁸, 13 Guillemot^{49,50}, S. Guiriec^{17,51}, D. Hadasch⁵², A. K. Harding¹⁷, E. Havs¹⁷, J.W. Hewitt⁵³, A. B. Hill^{54,3} 14 L D. Horan²⁵, T. Jogler³, G. Jóhannesson⁵⁵, T. Kamae⁵⁶, S. Kensei⁴³, D. Kocevski¹⁷, M. Kuss¹⁹ 15 G. La Mura^{16,52}, S. Larsson^{8,5}, L. Latronico²¹, M. Lemoine-Goumard³⁷, J. Li⁵⁷, L. Li^{8,5}, F. Longo^{12,13}, 16 F. Loparco^{31,20}, M. N. Lovellette⁴⁸, P. Lubrano³⁵, G. M. Madejski³, J. Magill¹⁸, S. Maldera²¹, 17 A. Manfreda¹⁹, M. Marelli³², M. Mayer¹, M. N. Mazziotta²⁰, J. E. McEnery^{17,18,58}, M. Meyer^{4,5} 18 P. F. Michelson³, N. Mirabal^{17,51}, T. Mizuno⁵⁹, A. A. Moiseev^{28,18}, M. E. Monzani³, E. Moretti⁶⁰, 19 A. Morselli⁴⁶, I. V. Moskalenko³, S. Murgia⁶¹, M. Negro^{21,22}, E. Nuss²³, T. Ohsugi⁵⁹, N. Omodei^{3,62} 20 Orienti³⁹, E. Orlando³, J. F. Ormes⁶³, D. Paneque^{60,3}, J. S. Perkins¹⁷, M. Pesce-Rollins^{19,3}, F. Piron²³, 21 G. Pivato¹⁹, T. A. Porter³, J. L. Racusin^{17,64}, S. Rainò^{31,20}, R. Rando^{15,16}, S. Razzague²⁴, A. Reimer^{52,3}, 22 O. Reimer^{52,3}, T. Reposeur³⁷, S. Ritz⁷, L. S. Rochester³, R. W. Romani³, P. M. Saz Parkinson^{7,65}, 23 C. Sgrò¹⁹, D. Simone²⁰, E. J. Siskind⁶⁶, D. A. Smith³⁷, F. Spada¹⁹, G. Spandre¹⁹, P. Spinelli^{31,20}, 24 D. J. Suson⁶⁷, H. Tajima^{68,3}, J. G. Thayer³, J. B. Thayer³, D. J. Thompson¹⁷, L. Tibaldo⁶⁹, 25 26 D. F. Torres^{57,70}, E. Troja^{17,18}, Y. Uchiyama⁷¹, T. M. Venters¹⁷, G. Vianello^{3,72}, K. S. Wood⁴⁸, M. Wood³ G. Zaharijas73,74, S. Zhu18, S. Zimmer4,5

(2016ApJ...823L...2A) arXiv:1602.04488

Searching the Gamma-ray Sky for Counterparts to Gravitational Wave Sources: Fermi GBM and LAT Observations of LVT151012 and GW151226

J. L. Racusin^{1*}, E. Burns^{2*}, A. Goldstein^{3*}, V. Connaughton³, C. A. Wilson-Hodge⁴, P. Jenke⁵ L. Blackburn⁶, M. S. Briggs^{5,7}, J. Broida⁸, J. Camp¹, N. Christensen⁸, C. M. Hui⁴. T. Littenberg³, P. Shawhan⁹, L. Singer^{+,1}, J. Veitch¹⁰, P. N. Bhat⁵, W. Cleveland³, G. Fitzpatrick¹¹, M. H. Gibby¹², A. von Kienlin¹³, S. McBreen¹¹, B. Mailyan⁵, C. A. Meegan⁵ W. S. Paciesas³, R. D. Preece⁷, O. J. Roberts¹¹, M. Stanbro⁷, P. Veres⁵, B.-B. Zhang^{5,14} Fermi LAT Collaboration: M. Ackermann¹⁵, A. Albert¹⁶, W. B. Atwood¹⁷, M. Axelsson^{18,19}, L. Baldini^{20,21}, J. Ballet²² G. Barbiellini^{23,24}, M. G. Baring²⁵, D. Bastieri^{26,27}, R. Bellazzini²⁸, E. Bissaldi²⁹, R. D. Blandford²¹, E. D. Bloom²¹, R. Bonino^{30,31}, J. Bregeon³², P. Bruel³³, S. Buson^{+,1}, G. A. Caliandro^{21,34}, R. A. Cameron²¹, R. Caputo¹⁷, M. Caragiulo^{35,29}, P. A. Caraveo³⁶, E. Cavazzuti³⁷, E. Charles²¹, J. Chiang²¹, S. Ciprini^{37,38}, F. Costanza²⁹, A. Cuoco^{30,30} S. Cutini^{37,38}, F. D'Ammando^{40,41}, F. de Palma^{29,42}, R. Desiante^{43,39}, S. W. Digel²¹, N. Di Lalla²⁸, M. Di Mauro²¹, L. Di Venere^{35,29}, P. S. Drell²¹, C. Favuzzi^{35,29}, E. C. Ferrara¹ W. B. Focke²¹, Y. Fukazawa⁴⁴, S. Funk⁴⁵, P. Fusco^{35,29}, F. Gargano²⁹, D. Gasparrini^{37,38}, N. Giglietto^{35,29}, R. Gill⁴⁶, M. Giroletti⁴⁰, T. Glanzman²¹, J. Granot⁴⁶, D. Green^{1,47}, J. E. Grove⁴⁸, L. Guillemot^{49,50}, S. Guiriec¹, A. K. Harding¹, T. Jogler⁵¹, G. Jóhannesson⁵² T. Kamae⁵³, S. Kensei⁴⁴, D. Kocevski¹, M. Kuss²⁸, S. Larsson^{18,54}, L. Latronico³⁰, J. Li⁵⁵, F. Longo^{23,24}, F. Loparco^{35,29}, P. Lubrano³⁸, J. D. Magill⁴⁷, S. Maldera³⁰, D. Malyshev⁴⁵ J. E. McEnery^{1,47}, P. F. Michelson²¹, T. Mizuno⁵⁶, A. Morselli⁵⁷, I. V. Moskalenko²¹, M. Negro^{30,31}, E. Nuss³², N. Omodei^{21*}, M. Orienti⁴⁰, E. Orlando²¹, J. F. Ormes⁵⁹, D. Paneque^{60,21}, J. S. Perkins¹, M. Pesce-Rollins^{28,21}, F. Piron³², G. Pivato²⁸, T. A. Porter²¹ G. Principe⁴⁵, S. Rainò^{35,29}, R. Rando^{26,27}, M. Razzano^{28,61}, S. Razzaque⁶², A. Reimer^{63,21} O. Reimer^{63,21}, P. M. Saz Parkinson^{17,64,65}, J. D. Scargle⁶⁶, C. Sgrò²⁸, D. Simone²⁹ E. J. Siskind⁶⁷, D. A. Smith⁶⁸, F. Spada²⁸, P. Spinelli^{35,29}, D. J. Suson⁶⁹, H. Tajima^{70,21} J. B. Thayer²¹, D. F. Torres^{55,71}, E. Troja^{1,47}, Y. Uchiyama⁷², G. Vianello²¹*, K. S. Wood⁴⁸, M. Wood²¹

arXiv:1606.04901