

Observations of Galactic cosmic ray accelerators in the gamma ray sky with Fermi-LAT

F. de Palma

(INFN Bari and Università Telematica Pegaso), M. Caragiulo and L. Di Venere on behalf of the Fermi LAT Collaboration

SciNeGHE 2016

- Galactic sources
 - Pulsar Wind Nebulae
 - Binaries
 - Novae
- LAT SNR observations
 - SNRs with hadronic emission
 - Young SNRs
- SNR Catalog:
 - Results
 - Multiwavelength correlations
 - Constraining Cosmic Ray (CR) acceleration
- Conclusions

Galactic sources:

• <u>PWNe</u>

Gamma-ray Space Telescope

- <u>Novae</u>
- <u>Binary systems</u>
- <u>SNRs</u>
- Pulsars
- (See P. Parkinson talk)
- Galactic center and interstellar emission
- (see E. Orlando talk)
- Solar System
- (See R. Desiante talk)

3FGL Catalog: 3033 sources 6% are PSR and 5% other Galactic sources See J. Ballet talk

Gamma-ray sky above 50 GeV

• 38 Galactic sources above 50 GeV in 2FHL (Ackermann+ 2016):

Pulsar	psr	1
Pulsar wind nebula	pwn	14
Supernova remnant	snr	16
Supernova remnant/Pulsar wind nebula	spp	4
High-mass binary	hmb	2
Binary	bin	1
Star-forming region	sfr	1

Gamma-ray Space Telescope Gamma-ray Space Telescope

Pulsar Wind Nebulae

- Energy is carried away in a magnetized wind of charged particles.
- PWNe contain both the relic accelerated particles from the pulsar and particles accelerated within the termination shock.

Crab

Abdo+ Science 2011, Buehler+ ApJ 2012 (2011 flare) Mayer+ ApJ 2013 (2013 flare) Also detected by Agile: Tavani+ Science 2011

Gamma-ray Space Telescope

Microquasars: Cygnus X-3

- BH or NS in binary systems with relativistic jets
- Identified by:
 - Location;
 - modulation of the γ-ray flux at the orbital period of the binary system;
 - γ-ray variability correlated with the radio emission.

Corbel+ MNRAS 2012, Abdo+ Science 2009. Also detected by Agile: Tavani+ Nature 2009

Pulsar Binaries: PSR B1259-63

- Emission due to the interaction of the relativistic PSR wind and the photon field of the massive star.
- Periodicity: 3.4 years

Abdo+ Apj 2011.

γ-ray Novae

- 6 Novae detected up to now (ongoing researches on new candidates)
- Soft spectrum transient γ -ray sources detected over 2–7 week.
- Unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions.

F. de Palma @ SciNeGHE 2016

Cheung+ Apj 2016

Supernova Remnants

SNRs with hadronic emission

γ-ray emission dominated by Inverse Compton

Young SNRs

Hadronic scenario

γ-ray emission dominated by pion decay Presence of accelerated protons

Morphology studies with Pass 8

RCW 86

M. Ajello+ ApJ 2016

Detected as extended with Pass8: radius ~ 0.37° ±0.02°

Best morphological photon distribution: **H.E.S.S. template** (A. Abramowski+, accepted for publication by A&A)

Multi-zone analysis ongoing RX J1713.7-3946 Preliminary results in Condon+ @ Gamma 2016

IC 443

Preliminary results in Hewitt+ @ Fermi Symposium 2015

Characterized 279 regions containing known radio SNRs:

- 102 candidates have significant GeV emission:
 - 36 candidates classified through spatial association with radio data:
 - 17 extended: <u>4 new</u>!
 - 2 show spectral curvature
 - 13 point-like hypothesis preferred: <u>10 new</u>!
 - 2 are flagged for IEMs systematics
 - 4 identified as other sources (Crab, binary, and PWN/PSR)
 - 14 marginally classified candidates
- For the 245 candidates that don't have a significant GeV emission or that fail classification, we report their ULs.
- <u>All the detected sources were tested for effects related to the choice of IEMs.</u>

Indexes of the candidate sources are distributed in the large range between 1.5 and 5, while fluxes are in a two orders of magnitude interval.

Gamma-ray Space Telescope

Radio-GeV Flux

LAT-detected SNRs tend to be radio-bright:

If radio and GeV emission arise from the same particle population(s), under simple assumptions, the GeV and radio indices should be correlated:

Gamma-ray Space Telescope

F. de Palma @ SciNeGHE 2016

Multiple emission zones? 17

- Indication of break at TeV energies
- Caveat: TeV sources are not uniformly surveyed.

- Indication of break at TeV energies
- Caveat: TeV sources are not uniformly surveyed.

Constraining CR emission

Assuming that the whole gamma ray emission arises from the interaction of CR with the ISM.

$$F(1 - 100 \,\text{GeV}) \approx f(\Gamma_{\text{CR}}) \times \frac{\epsilon_{\text{CR}}}{0.01} \times \frac{E_{\text{SN}}}{10^{51} \,\text{erg}} \times \frac{n}{1 \,\text{cm}^{-3}} \times \left(\frac{d}{1 \,\text{kpc}}\right)^{-2} \times 10^{-9} \,\text{cm}^{-2} \,\text{s}^{-1}$$

Space Telescope

Gamma-ray Space Telescope

21/10/2016

The estimates and upper limits on the CR energy content span more than three orders of magnitude, from a few $10^{49} erg$ to several $10^{52} erg$.

- SNRs above the $\epsilon_{CR} = 1$ ($E_{CR} = E_{SN} = 10^{51} erg$) \rightarrow higher density than derived from X-ray or assumed \rightarrow interacting SNRs are in dense environment.
- Young SNRs $\epsilon_{CR} \sim 0.1 \rightarrow$ IC processes may contribute to their measured luminosity.

- Fermi has proved to be extremely successful in studying galactic sources, both steady and variable.
- Pass 8 is allowing detailed studies of the morphology of extended sources, better identifying emitting regions.
- Multiwavelength analysis allows to study the emission mechanism.
- In the SNR catalog we have identified a statistically significant population of Galactic SNRs, including:
 - 17 (4 new) extended and 13 (10 new) pointlike SNR candidates
 - Candidate distribution to flux completeness of $10^{-8} ph cm^{-2}s^{-1}$ with a characteristic index of 2.5 and range [1.5, 4]
 - Candidates SNRs and ULs are generally within expectations if SNRs provide the majority of Galactic CRs.