Future cosmic ray detectors (ground & space)

Elena Vannuccini INFN Firenze

Overview

Energy

- Space
 - Search for antideuterons with GAPS
 - Next generation calorimeter experiments (HERD)
 - Next generation spectrometers

Ground

- Advanced composition studies from the knee to the ankle
 - LHAASO
 - EAS radio detection
 - AugerPrime

Back to space

EHECRs with JEM-EUSO

In this talk:

- Focus on experiments that present some «novelties»
- Often superposition with γ-rays and υ. Focus on charged CRs perspectives.

Space experiments

Experiment	e ⁺ e ⁻ (present data)	e⁺+e⁻ (Energy range)	CR nuclei (Energy range)	charge Z	gamma	Туре	Launch			
PAMELA	e⁺ < 300 GeV e⁻ < 625 GeV	1-700 GeV (3 TeV with cal)	1 GeV-1.2 TeV (extendable -> 2TeV)	1-8	-	SAT	2006 Jun 15	Expected: • Higher-stat. data		
FERMI	-	7 GeV – 2 TeV	50 GeV-1 TeV	1	20 MeV – 300 GeV GRB 8 KeV – 35 MeV	SAT	2008 Nov 11	from AMS02 and Fermi		
AMS-02	e ⁺ < 500 GeV e ⁻ < 700 GeV	1 GV-1 TV (extendable)	1 GV-1.9 TV (extendable)	1-26 ++	1 GeV-1 TeV (calorimeter)	ISS	2011 May 16	• Extention of		
NUCLEON	-	100 GeV-3 TeV	100 GeV-1 PeV	1-30	-	SAT	2014/12/26 Dec 26	 primary spectra to high energy 		
CALET		1 GeV-10 TeV (extendable -> 20TeV)	10 GeV-1 PeV	1-40	10 GeV-10 TeV GRB 7-20 MeV	ISS	2015 Aug 19	from calorimeter		
DAMPE	-	10 GeV-10 TeV	50 GeV-500 TeV	1-20	5 GeV-10 TeV	SAT	2015 Dec 17	(Bertucci talk)		
ISS-CREAM	_	100 GeV-10 TeV	1 TeV-1 PeV	1-28 ++	-	ISS	~ 2017	Downsized		
CSES	-	3-200 MeV	30-300 MeV	1	-	SAT	~ 2017	(focus on γ)		
GAMMA-400	-	1 GeV-20 TeV	1 TeV-3 PeV	1-26	20 MeV-1 TeV	SAT	~2023-25			
HERD	-	10(s) GeV–10 TeV	up to PeV	TBD	10(s) GeV–10 TeV	CSS	~2022-25	Next-generation		
HELIX	-	-	< 10 GeV/n	light isotopes	-	LDB	proposal			
HNX	-	-	~ GeV/n	6-96	-	SAT	proposal	(Now approved)		
GAPS	-	-	< 1GeV/n	Anti-p, D	-	LDB	proposal	anti-matter meas.		
Compilation by Marrocchesi @ ECRS 2016										

CR antimatter

Exploring channels with lower astrophysical backgrownd DM search by \overline{D} detection

 \bar{p} / \overline{D} separation based on:

- Time-of-light measurement along antiparticle trajectory
- Multiple dE/dx measurements
- •X-ray energies
- Pion/proton multiplicity

Antimatter detection withot a magnet

Detection concept

- 1. Low-energy antiparticles (\bar{p}, \bar{D}) slow-down and stop in the medium, forming an **exotic atom** in its **excited** state
- 2. The atom de-excites via emission of **X-rays**
- The antiparticle undergoes annihilation with atomic nucleus, emitting pions and protons

GAPS

- General Anti-Particle Spectrometer
 - Time-of-flight plastic scintillator
 - 500 ps time resolution
 - 10 layers of Si(Li) detectors
 - 12×12 wafer segmented in 4 strip
 - ightarrow 3D particle tracking
 - 3keV energy resolution
 - \rightarrow X-ray spectroscopy
- Measurement of p
 and search for D
 at low energy (<250MeV)
- Status:
 - 1° LDB flight in 2020/2021
 - +2 LDB planned

Ideal location, due to low geomagnetic cutoff

GAPS science

Dark-matter search

- Extremely low astrophysical D
 background
- Sizable primary D signal from several DM model
 - Unexplored-phase space
 - Mainly light DM
 - No boosting mechanism required
- Complementary to other searches
 - collider exp.
 - direct underground exp.
 - other indirect measurementes
- Aramaki et al review 2016

Potential breakthrough in DM search by \overline{D} detection

Galactic CR nuclei

Direct measurement of individual-element spectra up the H and He knee

With new-generation large-acceptance calorimeters

CaloCube concept

- INFN r&d project
- Optimization of calorimeter performances with limited mass budget
 - Cubic geometry \rightarrow 5 facet detection
 - Active absorber → good energy resolution
 - ▶ 3D segmentation \rightarrow shower imaging \rightarrow leakage correction (hadrons) & e/h separation

HERD

High-Energy cosmic-Radiation Detector

- To be installed on board the Chinese in 2020/2021
- Measurement of cosmic- and γ-rays at high energy

Xu @CRIS 2015

- A structure in the structur
- Tracker/converter (STK)
 7 Si/W planes (2 r.l.)
- Very large acceptance top+lateral particle detection
- 2.5m²sr and 20% en.res. for p @1TeV

HERD: expected performances

Extending antiparticle measurements at higher energies With new-generation spectrometers

Next generation spectrometers

- Must relay on superconducting magnets
- ALADINO magnetic spectrometer
 - Toroidal superconducting magnet
 - 10 coils wound with high-temperature (10s°K) superconductor (MgB₂)
 - $\langle B \rangle \sim 0.8$ T average magnetic field
 - Microstrip silicon tracking system
 - \blacktriangleright 4 layer with O(μ m) spatial resolution
 - ▶ MDR ~ 20 TV

 Proposal submitted to ESA Call for Science Ideas

ALADINO expected performances

 $PAMELA/AMS02 \rightarrow MDR \sim 1TV$

- Examples of contribution to $e^{\scriptscriptstyle +}$ and \overline{p} CR abundance from DM annihilation

ALADINO calorimeter

A Cylindrical shape calorimeter with 3D hexagonal tesselation

Indirect detection

Multi-component approach

Knee region

Bridging direct to higher-energy data with improved performances

Km2-size, high-resolution, multi-component array

LHAASO

Di Sciascio @ CRIS 2015

Large High-Altitude Air Shower Observatory

- Combined study of cosmic- and γ-rays
- Wide energy range $10^{12} \div 10^{17} \text{ eV}$
- Bridge from direct measurements to most energetic CR particles

Daocheng County, Sichuan, China

	Altitude (m)	e.m. Detection Area (m ²)	Instrumented Area (m ²)	Coverage							
KASCADE	110	5×10^{2}	4×10 ⁴	1.2×10 ⁻²							
ІсеТор	2835	4×10^{2}	10 ⁶	4×10 ⁻⁴	(→×10						
KASCADE-Grande	110	370	5×10 ⁵	7×10 ⁻⁴	extention with						
LHAASO	4410	5×10 ³	10 ⁶	5×10 ⁻³	lceTop-2 >2020						
		μ Detection Area (m ²)	Instrumented Area (m ²)	Coverage							
KASCADE	110	6×10^{2}	4×10 ⁴	1.5×10 ⁻²							
LHAASO	4410	4.4×10^4	10 ⁶	4.4×10 ⁻²							

Large coverage (~KASCADE)

Large area (~ IceTop)

High altitude (ARGO-YBJ) \rightarrow small fluctuations and low energy-threshold

LHAASO

Future indirect experiments

Transition region

An alternative approach to AES detection \rightarrow Radio detection

EAS radio emission

In air, emission region $\sim 1m \rightarrow$ coherence and strong amplification below 100 MHz

EAS radio detection

- Total emitted power (< 100 MHz) $\propto N^2 \propto E^2$
 - no significant atmospheric attenuation & only disturbance from thunderstorms
 - Energy threshold ~10¹⁶eV (galactic radio bk)
- Footprint dependent on the distance from shower maximum to antennas
- Small footprint limits maximum energy → dense arrays are required

- •Strongest potential in combination particle detectors
- •Just crossed the threshold from proof-of-principle to science application
- •Resolution: Energy < 20% Angle < 0.7° Maximum-depth < 20g/cm²

Accuracy in shower parameters competitive to fluorescence technique

SKA-low

Low-frequency core of the Square Kilometer Array

- Phase 1: ~ 60,000 antennas on ½ km²
- Scintillator array planned for E > 10¹⁶ eV

SQUARE KILOMETRE ARRAY 400 200 South - North (m) -200 -400antenna stations particle detectors -400-200 200 400 T. Huege et al., West - East (m) ICRC 2015, Den Haag

Start of construction >2018, in Australia

10 g/cm² resolution on shower maximum, with 100% duty cycle

Future indirect experiments

VHECRS

Improving mass-composition sensitivity in the cut-off region $\rightarrow e/\mu$ mass identification technique

15 g/cm2 resolution >10¹⁹eV < 10g/cm2 on absolute scale Duty cycle 15% 12% energy resolution >10EeV

Auger

- 1660 Water-Cherenkov particle Detector (WCD) stations (1.5 km spacing) over 3000 km²
- 4×6 fluorescence telescopes (FDs)
- Low-energy (10¹⁷ eV) enhancements
 - 3 High Elevation Auger Telescopes (HEATs)
 - Auger Muon and Infill Groung Array (AMIGA) : 61
 WCDs(750m spacing) + prototype underground scintillators
 - Auger Engineering Radio Array (AERA)

AugerPrime

- Proposed upgrade to Auger
 - Scintillator plane above the existing WCDs
 - E.m.-vs-muon EAS components
 - Direct comparison with TA
 - Upgrade of WCD electronics
 - Timing & dynamic range
 - Completion of the AMIGA array
 - Muon shower content
 - Possible extention of FD operation to high night-sky bk conditions
 - ▶ 50% duty-cycle increase
- Study of the mass composition of UHECRs
- Status
 - start deployment in 2017, full-upgrade data from 2018, statistics more than doubled by 2024

E.Vannuccini -- SchiNeGHE 2016

t/ns

Surface detector upgrade

AugerPrime: expected performances

Future indirect experiments

EHECRS

Search for CRs above the cutoff

\rightarrow Increasing the exposure by an order of magniture

JEM-EUSO

Extreme Universe Space Observatory

- to be installed on board the Japanese Experiment Module of the ISS
- EAS fluorescence-light detection from space
 - Wide fov (60°) near-UV telescope of 2.5m∅
 - 2 Fresnel lenses + foca surface PMTs
 - Extremely large exposure
 - Full-sky coverage

JEM-EUSO status

E.Vannuccini -- SchiNeGHE 2016

Casolino @UHEAP 2016

JEM-EUSO: expected performances

Future indirect experiments

Conclusions

Future directions in CR research (with some «technological» novelty)

- 1. Low-background indirect DM search with \overline{D} by GAPS
 - Possible breakthrough by \overline{D} detection
- 2. Calocube as possible approach for next generation calorimeter experiment in space (HERD?)
 - Locate the H/He «knee»
- 3. A possible approach to next generation spectrometer experiment in space
 - High-energy e^+ and \overline{p} measurement. Solution to e^+ excess puzzle?
- 4. Km2, high-resolution, multi-component EAS array @knee (LHAASO)
 - Composition-enhanced anisotropy study.
 - Understanding the role of confinement- and source-limits in determining GCR extintion
- 5. Radio detection as complementary approach to EAS detection
 - Competitive to standard techniques \rightarrow better understanding/modeling of EAS properties
 - Composition-enhanced measurements in the transition regions
- 6. e/μ mass discrimination technique applied @UHE (AugerPrime) **Thanks**!!
 - Composition-enhanced measurements in the cutoff region.
 - Understanding the extra-GCR extintion mechanism
- 7. Observation of EAS from space (JEM-EUSO)
 - Search for EHECRs above the cutoff region