Digital Processing with Focus onto Neutron Detection SNRI-V INFN, Padova

Second Lesson (2016-10-26)

Timing as a study case

Remind from first lesson

- ADCs can add noise to your signal ($\propto 2^{N-E N O B}$)

- Signal reconstruction can add artifacts and "noise" for fast transients (\leq Kernel Lenght $\times T_{s}$)

Timing with LED

- Timing: extracting a "time mark" from a signal, e.g. with a leading edge discriminator (LED);

Timing with LED

- Timing: extracting a "time mark" from a signal, e.g. with a leading edge discriminator (LED);
- LED: device emitting a logic "true" signal when input voltage crosses a fixed threshold (e.g. oscilloscope trigger)

Figure 4: Leading edge discriminator

LED and amplitude walk

In a LED, threshold crossing depends on amplitude for a fixed risetime. Reason: threshold is fixed.

Figure 5: Amplitude walk of a LED.

Constant Fraction Discrimination

- a Constant Fraction Discriminator acts as if its threshold could move dynamically: threshold is a fixed fraction f of full amplitude;

Figure 6: Constant Fraction Discriminator principle.

Constant Fraction Discrimination

- a Constant Fraction Discriminator acts as if its threshold could move dynamically: threshold is a fixed fraction f of full amplitude;

Figure 6: Constant Fraction Discriminator principle.

- amplitude walk reduced (eliminated exactly for a linear rising edge)

CFD and PSD

CFD useful also in Pulse Shape Discrimination: NE-213 anode current signal integrated on RC parallel \Longrightarrow the slower component of a proton signal (i.e. neutron detected) is associated to a longer risetime with respect to electron signal (i.e. gamma detected)

Figure 7: PSD from risetime (adapted from [Roush1964]).

Timing and noise: jitter

noise fluctuations affect signal \Longrightarrow time mark fluctuates around average

\Longrightarrow jitter: statistical time-mark fluctuations

Jitter: a simple model

Figure 8: Noise and jitter (adapted from [Spieler2005])

- σ_{n} std. dev. amplitude fluctuations \rightarrow "noise band" $2 \sigma_{n}$ wide

Jitter: a simple model

Figure 8: Noise and jitter (adapted from [Spieler2005])

- σ_{n} std. dev. amplitude fluctuations \rightarrow "noise band" $2 \sigma_{n}$ wide
- project σ_{n} on time axis: $\sigma_{t}=\frac{\sigma_{n}}{\left[|d S / d t|_{t_{x}}\right]}$ where $S\left(t_{x}\right)=V_{T}$

Jitter: a simple model

Figure 8: Noise and jitter (adapted from [Spieler2005])

- σ_{n} std. dev. amplitude fluctuations \rightarrow "noise band" $2 \sigma_{n}$ wide
- project σ_{n} on time axis: $\sigma_{t}=\frac{\sigma_{n}}{\left[|d S / d t|_{t_{x}}\right]}$ where $S\left(t_{x}\right)=V_{T}$
- we put threshold where $|d S / d t|$ is $\max \Longrightarrow \sigma_{t}$ minimum

Jitter: a simple model

Figure 8: Noise and jitter (adapted from [Spieler2005])

- σ_{n} std. dev. amplitude fluctuations \rightarrow "noise band" $2 \sigma_{n}$ wide
- project σ_{n} on time axis: $\sigma_{t}=\frac{\sigma_{n}}{\left[|d S / d t|_{t_{x}}\right]}$ where $S\left(t_{x}\right)=V_{T}$
- we put threshold where $|d S / d t|$ is $\max \Longrightarrow \sigma_{t}$ minimum
- linear signal front: $\left|\frac{d S}{d t}\right|=\frac{A}{t_{\text {rise }}} \Longrightarrow$

$$
\begin{equation*}
\sigma_{t}=\frac{\sigma_{n} t_{\text {rise }}}{A} \propto \frac{t_{\text {rise }}}{\mathrm{SNR}} \tag{3}
\end{equation*}
$$

A digital-CFD (dCFD)

CFD procedure for a "tail" signal (e.g. from charge preamp):

1) apply pole-zero cancellation + integration
to get rid of tail

Please note:

1. the time axis unit is ns;
2. original (not interpolated) signal has $T_{s}=10 \mathrm{~ns}$.

57 of 92

A digital-CFD (dCFD)

CFD procedure for a "tail" signal (e.g. from charge preamp): 2) calculate the baseline BL (e.g. averaging flat part: also consider noise autocorrelation, e.g. when calculating rise-time)

A digital-CFD (dCFD)

CFD procedure for a "tail" signal (e.g. from charge preamp): 3) calculate max amplitude A (samples average or amplitude of unit gain shaper); step amplitude $=A-B L$

```
maximum amplitude
```


A digital-CFD (dCFD)

CFD procedure for a "tail" signal (e.g. from charge preamp):
4) calculate dynamic threshold as
$\mathrm{T}=\mathrm{BL}+f(\mathrm{~A}-\mathrm{BL})$

A digital-CFD (dCFD)

CFD procedure for a "tail" signal (e.g. from charge preamp): 5) apply interpolation (whole signal shown... in real-life region around threshold is enough)
interpolation

A digital-CFD (dCFD)

CFD procedure for a "tail" signal (e.g. from charge preamp):
6) time mark $=$ intersection interpolation-threshold
(find it iteratively in complex cases)

Intersection time t_{X} is in units of T_{s} (fraction of the sampling period). Time in seconds from first sample $=t_{X} \cdot T_{s}$. If $x[n]$ last sample befoge t_{X} then $0<t_{X}-n<1$ (in this example, $n=23 t_{X} \sim 23.68$).

t-measurement: Sampling ADC vs Analog

Effects affecting resolution of digital timing:

- the sampling ADC adds noise to that already present in our system
\Longrightarrow this will tend to increase our jitter

t-measurement: Sampling ADC vs Analog

Effects affecting resolution of digital timing:

- the sampling ADC adds noise to that already present in our system \Longrightarrow this will tend to increase our jitter
- digitizing systems usually employ some kind of low-pass filter (antialias filter) before the ADC \Longrightarrow also rise-time will be affected (i.e. slowed down) \Longrightarrow jitter fluctuations increase

t-measurement: Sampling ADC vs Analog

Effects affecting resolution of digital timing:

- the sampling ADC adds noise to that already present in our system \Longrightarrow this will tend to increase our jitter
- digitizing systems usually employ some kind of low-pass filter (antialias filter) before the ADC \Longrightarrow also rise-time will be affected (i.e. slowed down) \Longrightarrow jitter fluctuations increase
- on the other hand, low pass antialias filter will attenuate high frequency noise \Longrightarrow jitter reduction

t-measurement: Sampling ADC vs Analog

Effects affecting resolution of digital timing:

- the sampling ADC adds noise to that already present in our system \Longrightarrow this will tend to increase our jitter
- digitizing systems usually employ some kind of low-pass filter (antialias filter) before the ADC \Longrightarrow also rise-time will be affected (i.e. slowed down) \Longrightarrow jitter fluctuations increase
- on the other hand, low pass antialias filter will attenuate high frequency noise \Longrightarrow jitter reduction
- detector signals have wide frequency bandwidth (wideband signals) \Longrightarrow signal reconstruction from samples affected by interpolation errors \Longrightarrow timing affected by interpolation "noise" (an effect not present in analog chains)

Jitter in a dCFD

- we get jitter as in analog LED or CFD [Bardelli2004];

Jitter in a dCFD

- we get jitter as in analog LED or CFD [Bardelli2004];
- assume signal perfectly reconstructed (e.g. original signal linear around threshold \Longrightarrow linear interpolation perfect!), then

$$
\begin{align*}
\sigma_{t} & \leq \frac{\sigma_{e+q}}{\left|\frac{\mathrm{dS}}{\mathrm{~d} t}\right|_{t_{x}}} \tag{4}\\
\sigma_{e+q}^{2} & =\sigma_{e}^{2}+\frac{1}{12 \cdot 4^{\mathrm{ENOB}}}
\end{align*}
$$

Jitter in a dCFD

- we get jitter as in analog LED or CFD [Bardelli2004];
- assume signal perfectly reconstructed (e.g. original signal linear around threshold \Longrightarrow linear interpolation perfect!), then

$$
\begin{align*}
\sigma_{t} & \leq \frac{\sigma_{e+q}}{\left|\frac{\mathrm{dS}}{\mathrm{~d} t}\right|_{t_{x}}} \tag{4}\\
\sigma_{e+q}^{2} & =\sigma_{e}^{2}+\frac{1}{12 \cdot 4^{\mathrm{ENOB}}}
\end{align*}
$$

- we are using units $R=1$ (R : full range of the ADC)

Jitter in a dCFD

- we get jitter as in analog LED or CFD [Bardelli2004];
- assume signal perfectly reconstructed (e.g. original signal linear around threshold \Longrightarrow linear interpolation perfect!), then

$$
\begin{align*}
\sigma_{t} & \leq \frac{\sigma_{e+q}}{\left|\frac{\mathrm{dS}}{\mathrm{~d} t}\right|_{t_{x}}} \tag{4}\\
\sigma_{e+q}^{2} & =\sigma_{e}^{2}+\frac{1}{12 \cdot 4^{\mathrm{ENOB}}}
\end{align*}
$$

- we are using units $R=1$ (R : full range of the ADC)
- NB: analog CFD similar formula except: equal sign, no ADC noise, a factor $\sqrt{1+f^{2}}$

dCFD simulation: asynchronous sampling

- asynchronous sampling + interpolation \Longrightarrow time mark fluctuation!

dCFD simulation: asynchronous sampling

- asynchronous sampling + interpolation \Longrightarrow time mark fluctuation!
- effect of interpolation in a simple case: linear interpolation

dCFD simulation: asynchronous sampling

- asynchronous sampling + interpolation \Longrightarrow time mark fluctuation!
- effect of interpolation in a simple case: linear interpolation

- non linear front \Longrightarrow reconstruction not perfect

dCFD simulation: asynchronous sampling

- asynchronous sampling + interpolation \Longrightarrow time mark fluctuation!
- effect of interpolation in a simple case: linear interpolation

- non linear front \Longrightarrow reconstruction not perfect
- for a fixed signal shape, t_{x} depends on where samples are taken

dCFD simulation: asynchronous sampling

- asynchronous sampling + interpolation \Longrightarrow time mark fluctuation!
- effect of interpolation in a simple case: linear interpolation

- non linear front \Longrightarrow reconstruction not perfect
- for a fixed signal shape, t_{x} depends on where samples are taken
- i.e. on phase of sampling clock $w /$ respect to signal front

dCFD simulation: asynchronous sampling

- asynchronous sampling + interpolation \Longrightarrow time mark fluctuation!
- effect of interpolation in a simple case: linear interpolation

- non linear front \Longrightarrow reconstruction not perfect
- for a fixed signal shape, t_{x} depends on where samples are taken
- i.e. on phase of sampling clock $w /$ respect to signal front
- will happen anyway w/ other kernels (not BW limited signal)

Questions about interpolation "noise"

- effect of interpolation different for linear and cubic;
- we know there are many kernels available...
- which kernel is the "best" one?
- for a given T_{s} what is the minimum risetime safe from interpolation noise?
- from the previous lesson:

dCFD simulation: basic principle

- simulate signals having different risetimes (jitter is expected to increase with risetime);

dCFD simulation: basic principle

- simulate signals having different risetimes (jitter is expected to increase with risetime);
- signal are sampled asynchronously with respect to the signal itself (i.e. for each event the sampling comb is translated rigidly, keeping the T_{s} separation between samples);

dCFD simulation: basic principle

- simulate signals having different risetimes (jitter is expected to increase with risetime);
- signal are sampled asynchronously with respect to the signal itself (i.e. for each event the sampling comb is translated rigidly, keeping the T_{s} separation between samples);
- sampling comb shift extracted from uniform distribution in $\left(-T_{s} / 2, T_{s} / 2\right)$;

dCFD simulation: basic principle

- simulate signals having different risetimes (jitter is expected to increase with risetime);
- signal are sampled asynchronously with respect to the signal itself (i.e. for each event the sampling comb is translated rigidly, keeping the T_{s} separation between samples);
- sampling comb shift extracted from uniform distribution in $\left(-T_{s} / 2, T_{s} / 2\right)$;
- same procedure employed for simulation of interpolation noise;

dCFD simulation: basic principle

- simulate signals having different risetimes (jitter is expected to increase with risetime);
- signal are sampled asynchronously with respect to the signal itself (i.e. for each event the sampling comb is translated rigidly, keeping the T_{s} separation between samples);
- sampling comb shift extracted from uniform distribution in $\left(-T_{s} / 2, T_{s} / 2\right)$;
- same procedure employed for simulation of interpolation noise;
- random noise added to each signal (noise standard deviation constant for all signals);

dCFD simulation: basic principle

- simulate signals having different risetimes (jitter is expected to increase with risetime);
- signal are sampled asynchronously with respect to the signal itself (i.e. for each event the sampling comb is translated rigidly, keeping the T_{s} separation between samples);
- sampling comb shift extracted from uniform distribution in $\left(-T_{s} / 2, T_{s} / 2\right)$;
- same procedure employed for simulation of interpolation noise;
- random noise added to each signal (noise standard deviation constant for all signals);
- noise variance and spectrum depends on two contributions: the simulated front-end electronics bandwidth (σ_{e} in eq. (4)) and the simulated ADC noise, derived from $\mathrm{ENOB}\left(\sigma_{q}=\frac{1}{\sqrt{12} \cdot 2^{\mathrm{ENOB}}}\right.$ in eq. (4)).

dCFD simulation: $12 \mathrm{bit}, 10.8 \mathrm{ENOB}, 100 \mathrm{MHz}$ ADC

- FWHM of t_{x} spectrum vs signal risetime [Bardelli2004]:

- cubic interpolation much better than linear: $\min \{F W H M\}=100 \mathrm{ps}$!
- $t=0$ known \Longrightarrow fluctuations due to t_{x} determination only
- $t_{\text {rise }}>60 \mathrm{~ns} \Longrightarrow$ FWHM $\propto t_{r}$ (SNR constant!) (cfr. eq. (3));
- FWHM increases rapidly as risetime decreases under 60 ns .

63 of 92

Interpolation artifacts: double coincidence peak

- When interpolation dominates resolution strange artifacts appear;
- Example: experimental data (time coincidence between two Si detectors exposed to diffused UV pulsed laser) [Pastore2013]:

- rise-time less than $4 T_{s}$; cubic interp. (4 consecutive samples)
- coincidence peak not gaussian; left peak: signals for which first (out of 4) interpolation node (sample) lies on baseline; right peak:
64 sigignals for which first node already above baseline.

Questions about ADC's

- fast signals (characteristic times $\leq 3 \div 4 T_{s}$): interpolation affects FWHM;
- the faster the ADC the better? buy the ADCs with highest F_{s} ?
- remember ENOB? lower ENOB \Longrightarrow more time jitter;
- in real ADCS, high ENOB and high F_{s} are conflicting requirements.

Timing measurement: simulation of different ADC's

Figure 9: Time resolution (FWHM) for different ENOB/ F_{s} combinations vs charge preamp risetime [Bardelli2004]. Cubic interpolation used.
high sampling rate and high ENOB: conflicting requirements

Timing measurement: simulation of different ADC's

Figure 9: Time resolution (FWHM) for different ENOB/ F_{s} combinations vs charge preamp risetime [Bardelli2004]. Cubic interpolation used.

Timing measurement: simulation of different ADC's

Figure 9: Time resolution (FWHM) for different ENOB / F_{s} combinations vs charge preamp risetime [Bardelli2004]. Cubic interpolation used.
risetime $>60 \mathrm{~ns}: \mathrm{ENOB}=12(\mathrm{a}, \mathrm{d}, \mathrm{f}) \approx$ analog CFD at 400 and 100 MS/s
66 of 92

Timing measurement: simulation of different ADC's

Figure 9: Time resolution (FWHM) for different ENOB/ F_{s} combinations vs charge preamp risetime [Bardelli2004]. Cubic interpolation used.
$\mathrm{ENOB}=8$ at $1 \mathrm{GS} / \mathrm{s}$ too noisy! far from analog (except for rise-time $\sim 2 \div 3 \mathrm{~ns}$); worse than 12 ENOB at $100 \mathrm{MS} / \mathrm{s}$ for rise-time $>30 \mathrm{~ns}$.
66 of 92

Timing measurement: simulation of different ADC's

Figure 9: Time resolution (FWHM) for different ENOB / F_{s} combinations vs charge preamp risetime [Bardelli2004]. Cubic interpolation used.
risetime $\approx 60 \mathrm{~ns}$: even $\mathrm{ENOB}=10.8100 \mathrm{MS} / \mathrm{s}$ comes close to analog $\mathrm{ENOB}=12, T_{s}=10 \mathrm{~ns} \Longrightarrow \min \{\mathrm{FWHM}\}=100 \div 200 \mathrm{ps}!$

Timing measurement: simulation of different ADC's

Figure 9: Time resolution (FWHM) for different ENOB / F_{s} combinations vs charge preamp risetime [Bardelli2004]. Cubic interpolation used.
risetime $<60 \mathrm{~ns}$: at $100 \mathrm{MS} / \mathrm{s}$ interpolation dominates! \Longrightarrow $F_{s}=100 \mathrm{MS} / \mathrm{s}$ not enough
66 of 92

Timing measurement: simulation of different ADC's

Figure 9: Time resolution (FWHM) for different ENOB / F_{s} combinations vs charge preamp risetime [Bardelli2004]. Cubic interpolation used. N.B. $\left(E N O B=12 F_{s}=400 \mathrm{MS} / \mathrm{s}\right)$ better than (ENOB=8 $F_{s}=1 \div 2 \mathrm{GHz}$) down to risetime $=7 \mathrm{~ns}$!

Final message

enough samples on front (about $4 \div 5$) $\underset{\text { Gade }}{\longrightarrow}$ better high ENOB than high F_{s}

Time resolution and PSD in Si detectors

- FAZIA (Four π A Z Identification Array) collaboration;
- charge (Z) id of nuclei stopped in $300 \mu \mathrm{~m}$ thick Si ;

Figure 10: "Si-Energy vs Charge rise-time" (from [Carboni2012]).

- elements from $Z=2$ to $Z=54$ are resolved;
- risetimes from 20 to $220 \mathrm{~ns} \Longrightarrow Z$ id possible thanks to $\approx 100 \mathrm{ps}$ $\underset{68 \text { of } 92}{ }$ resolution. (ADC is $14 \mathrm{bit}, 100 \mathrm{MS} / \mathrm{s}$, digitizer $\mathrm{ENOB}=11.2$);

Moving average, a simple Low Pass filter

Causal mov. average of M samples from $\times[n-M+1]$ to $\times[n]$ Convolution: $y[n]=\frac{1}{M} \sum_{i=0}^{M-1} x[n-i]$ Also recursion works: $y[n]=y[n-1]+\frac{1}{M}(x[n]-x[n-M])$ Frequency response: Low Pass Filter

Impulse Response DFT (frequency response)

Moving average, a simple Low Pass filter

Effect of moving average on a detector pulse. The processed signal is in red. Transients are slowed down (low-pass!).

Moving average, a simple Low Pass filter

The same picture expanded to show how the noise on the baseline is reduced by the moving average.

Application to n / γ PSD

n / γ PSD: introduction

- liquid organic scintill. (e.g. BC501), cyclic aromatic compounds

The σ-hybrid orbitals of the carbon atoms of benzene (Coulson, 1952).

The π-molecular orbitals in benzene (Coulson, 1952).

- scintillation emitted by excited molecules featuring π level structure
- emission involving only singlet states \Longrightarrow shorter emission time
- emission through triplet states \Longrightarrow longer emission time

n / γ PSD: introduction

- density of triplet states along particle track affects overall emission time
- remind: γ must transfer energy to an electron, neutron to a proton
- density of triplet states greater where greater specific energy loss:

- take 1 MeV kinetic energy: then $(\beta \gamma)_{\text {electron }}=2.8$ and $(\beta \gamma)_{\text {proton }}=4.510^{-2}$
- much higher density for $\mathrm{p} \Longrightarrow$ longer emission time ("tail" in signal).

PSD with charge comparison 1

- two integrations, usually slow (a.k.a. tail) and total

Figure 11: Slow and total integral (adapted from [Söderstrom2008]).

PSD with charge comparison 1

- two integrations, usually slow (a.k.a. tail) and total

Figure 11: Slow and total integral (adapted from [Söderstrom2008]).

- sometimes fast (a.k.a. early) and total

PSD with charge comparison 2

- most used PSD method (see ref. table at the end);

PSD with charge comparison 2

- most used PSD method (see ref. table at the end);
- baseline statistical uncertainty: keep it below other causes of uncertainty (use enough samples for average), see [Bardelli2006].

PSD with charge comparison 2

- most used PSD method (see ref. table at the end);
- baseline statistical uncertainty: keep it below other causes of uncertainty (use enough samples for average), see [Bardelli2006].
- interpolation: from what we have learnt, we can exploit it:

PSD with charge comparison 2

- most used PSD method (see ref. table at the end);
- baseline statistical uncertainty: keep it below other causes of uncertainty (use enough samples for average), see [Bardelli2006].
- interpolation: from what we have learnt, we can exploit it:

1. to determine the time mark reference for integral start (either with a LED or CFD algorithm or using interpolation to find "real" maximum);

PSD with charge comparison 2

- most used PSD method (see ref. table at the end);
- baseline statistical uncertainty: keep it below other causes of uncertainty (use enough samples for average), see [Bardelli2006].
- interpolation: from what we have learnt, we can exploit it:

1. to determine the time mark reference for integral start (either with a LED or CFD algorithm or using interpolation to find "real" maximum);
2. to evaluate integrals starting/ending "in between samples" (most often previous point will take you in between);

PSD with charge comparison 2

- most used PSD method (see ref. table at the end);
- baseline statistical uncertainty: keep it below other causes of uncertainty (use enough samples for average), see [Bardelli2006].
- interpolation: from what we have learnt, we can exploit it:

1. to determine the time mark reference for integral start (either with a LED or CFD algorithm or using interpolation to find "real" maximum);
2. to evaluate integrals starting/ending "in between samples" (most often previous point will take you in between);

- really consider 2$)$ if $\Delta t \approx T_{s}\left(\Delta t \gg T_{s}\right.$: it is OK to just sum samples);

PSD with charge comparison 3

- antialiasing filter could slow down first part \Longrightarrow increase Δt of fast with respect to analog FEE (part of fig. 1 in [Bardelli2002]);

PSD with charge comparison 4

- to minimize ADC noise fluctuations, fast (shorter) could be better than slow (longer). If $s[i]$ is signal and $n[i]$ is noise

$$
\begin{gathered}
\mathrm{V}\left\{\sum_{i=1}^{M}(s[i]+n[i])\right\}=\mathrm{V}\left\{\sum_{i=1}^{M} s[i]\right\}+\mathrm{V}\left\{\sum_{i=1}^{M} n[i]\right\}= \\
=\mathrm{V}\left\{\sum_{i=1}^{M} s[i]\right\}+M \mathrm{~V}\{n[i]\}
\end{gathered}
$$

where $\mathrm{V}\{\cdot\}$ is variance operator and we assume same noise variance on all samples \Longrightarrow noise contribution $\propto M$;

PSD with charge comparison 4

- more complex weigthing function $w(t)$ than "rectangular gated" integral can be used [Gatti1962, Söderstrom2008]
- the optimal is very close to rectangular anyway:

Figure 12: Optimal weigthing function (solid) and rectangular slow integral (dashed). An average neutron signal shape is also shown, from [Söderstrom2008].

PSD: zero crossing and risetime

Figure 13: Zero crossing and risetime methods, from [Södestrom2008].

- zero-crossing signal obtained differentiating charge signal (e.g. bipolar DL shaping, usually need also low-pass: mov. average);

PSD: zero crossing and risetime

Figure 13: Zero crossing and risetime methods, from [Södestrom2008].

- zero-crossing signal obtained differentiating charge signal (e.g. bipolar DL shaping, usually need also low-pass: mov. average);
- zc-time: time from signal start to zero crossing of bipolar;

PSD: zero crossing and risetime

Figure 13: Zero crossing and risetime methods, from [Södestrom2008].

- zero-crossing signal obtained differentiating charge signal (e.g. bipolar DL shaping, usually need also low-pass: mov. average);
- zc-time: time from signal start to zero crossing of bipolar;
- risetime: time for amplitude to go from, e.g., 10% to 90% of maximum;

PSD: zero crossing and risetime

Figure 13: Zero crossing and risetime methods, from [Södestrom2008].

- zero-crossing signal obtained differentiating charge signal (e.g. bipolar DL shaping, usually need also low-pass: mov. average);
- zc-time: time from signal start to zero crossing of bipolar;
- risetime: time for amplitude to go from, e.g., 10% to 90% of maximum;
- strictly related: zc-time \leftrightarrow time of zero derivative \leftrightarrow time of max;

PSD: zero crossing and risetime

Figure 13: Zero crossing and risetime methods, from [Södestrom2008].

- zero-crossing signal obtained differentiating charge signal (e.g. bipolar DL shaping, usually need also low-pass: mov. average);
- zc-time: time from signal start to zero crossing of bipolar;
- risetime: time for amplitude to go from, e.g., 10% to 90% of maximum;
- strictly related: zc-time \leftrightarrow time of zero derivative \leftrightarrow time of max;
${ }_{78}$ of mest used, together with charge comparison;

PSD: Time over Threshold and Q-Risetime

- relevance of interpolation for precise time mark evaluation (both $t=0$ mark and zero crossing);
- risetime: digital integration+interpolation based dCFD algorithm;
- risetime equivalent: "time over threshold";

Basic principle of Time over Threshold

PSD: Time over Threshold and Q-Risetime

- relevance of interpolation for precise time mark evaluation (both $t=0$ mark and zero crossing);
- risetime: digital integration+interpolation based dCFD algorithm;
- risetime equivalent: "time over threshold";

BC501 sampled with 12 bit, 250 MSPS, 10.5 ENOB, Am-Be source, Time Over Threshold

PSD Total vs ToverTh - Mov Ave Cubic

Cubic interpolation: moving average helps getting better separation.

PSD: Time over Threshold and Q-Risetime

- relevance of interpolation for precise time mark evaluation (both $t=0$ mark and zero crossing);
- risetime: digital integration+interpolation based dCFD algorithm;
- risetime equivalent: "time over threshold";

BC501 12 bit etc., Am-Be source, Charge Risetime

Cubicic dCFD at 20 and 80% to get $t_{\text {rise }}$ of integrated PMT signal.

PSD with reference shapes (a.k.a. NGMA)

- exploits "reference" shapes;

Figure 14: Reference signal shapes, from [Guerrero2008]. Note the energy dependence.

PSD with reference shapes (a.k.a. NGMA)

- exploits "reference" shapes;
- compares digitized signal to reference, a "similarity" parameter is extracted (e.g. $\sum_{i}\left(S[i]-\mathcal{S}_{r e f}[i]\right)^{2}$, etc.);

Figure 14: Reference signal shapes, from [Guerrero2008]. Note the energy dependence.

PSD with reference shapes (a.k.a. NGMA)

- exploits "reference" shapes;
- compares digitized signal to reference, a "similarity" parameter is extracted (e.g. $\sum_{i}\left(S[i]-\mathcal{S}_{r e f}[i]\right)^{2}$, etc.);
- "most similar" type is assigned;

Figure 14: Reference signal shapes, from [Guerrero2008]. Note the energy dependence.

PSD with reference shapes (a.k.a. NGMA)

- exploits "reference" shapes;
- compares digitized signal to reference, a "similarity" parameter is extracted (e.g. $\sum_{i}\left(S[i]-\mathcal{S}_{r e f}[i]\right)^{2}$, etc.);
- "most similar" type is assigned;
- reference shapes: averages over thousands of digitized signals

Figure 14: Reference signal shapes, from [Guerrero2008]. Note the energy dependence.

PSD with reference shapes (a.k.a. NGMA)

- exploits "reference" shapes;
- compares digitized signal to reference, a "similarity" parameter is extracted (e.g. $\sum_{i}\left(S[i]-\mathcal{S}_{r e f}[i]\right)^{2}$, etc.);
- "most similar" type is assigned;
- reference shapes: averages over thousands of digitized signals
- asynchronous sampling clock \Longrightarrow carefully align shapes before averaging

Figure 14: Reference signal shapes, from [Guerrero2008]. Note the energy dependence.

PSD with reference shapes (a.k.a. NGMA)

- exploits "reference" shapes;
- compares digitized signal to reference, a "similarity" parameter is extracted (e.g. $\sum_{i}\left(S[i]-\mathcal{S}_{r e f}[i]\right)^{2}$, etc.);
- "most similar" type is assigned;
- reference shapes: averages over thousands of digitized signals
- asynchronous sampling clock \Longrightarrow carefully align shapes before averaging
- interpolation can help:

Figure 14: Reference signal shapes, from [Guerrero2008]. Note the energy dependence.

PSD with reference shapes (a.k.a. NGMA)

- exploits "reference" shapes;
- compares digitized signal to reference, a "similarity" parameter is extracted (e.g. $\sum_{i}\left(S[i]-\mathcal{S}_{r e f}[i]\right)^{2}$, etc.);
- "most similar" type is assigned;
- reference shapes: averages over thousands of digitized signals
- asynchronous sampling clock \Longrightarrow carefully align shapes before averaging
- interpolation can help:

1. evaluating real start of the signal (dCFD);

Figure 14: Reference signal shapes, from [Guerrero2008]. Note the energy dependence.

PSD with reference shapes (a.k.a. NGMA)

- exploits "reference" shapes;
- compares digitized signal to reference, a "similarity" parameter is extracted (e.g. $\sum_{i}\left(S[i]-\mathcal{S}_{r e f}[i]\right)^{2}$, etc.);
- "most similar" type is assigned;
- reference shapes: averages over thousands of digitized signals
- asynchronous sampling clock \Longrightarrow carefully align shapes before averaging
- interpolation can help:

1. evaluating real start of the signal (dCFD);
2. calculating samples "in between" \Longrightarrow "oversampled" shapes can be aligned

Figure 14: Reference signal shapes, from [Guerrero2008]. Note the energy dependence.

PSD: current maximum

Maximum of current signal (at a given energy) depends on signal duration. In [Cavallaro2013] it is implemented with analog electronics. Digital signals: interpolation critical to get real maximum!

Original and Interpolated Signals

Original and Interpolated around max

PSD w/ BC501: Current Maximum

BC501 12 bit 250 MSPS, Am-Be source

Comparing left to right: beneficial effect of interpolation (Imax).

PSD w/ BC501: Current Maximum

BC501 12 bit 250 MSPS, Am-Be source

Comparing left to right: beneficial effect of moving average $w /$ interp.

PSD w/ BC501: Current Maximum

PSD Total vs Imax/Total - Mov.Ave and Interp

Comparing left to right: with mov. ave. you get "almost" there...

PSD: Pulse Gradient Analysis [D'Mellow2007]

Figure 15: Principle of PGA according to [D'Mellow2007] (picture taken from [Söderstrom2008]).

- normalized shape; PSD param.=amplitude at Δt after max;
- interpolation: both peak determination and amplitude after Δt;
- "smoothing" needed to reduce noise/fluctuations (method relies on a single amplitude, there is no intrinsic averaging).

Selected $\mathrm{n}-\gamma$ PSD literature (1)

	Scint.	Analog	Digital	ADC	Ref.
Adams1978	NE213	CC			NIM 156(1978)459
Alexander1961	NE213, UGLLT	ZC			NIM 13(1961)244
Ambers2011	EJ-309		CC+NGMA	12bit/250MHz	NIM A638(2011)116
Barnabà1998	BC501A	ZC			NIM A410(1998)220
Bell1981	NE213	CC			NIM 188(1981)105
Cao1988	NE213	ZC			NIM A416(1988)32
Cavallaro2013	NE213	IMAX			NIM A700(2013)65
Cerny2004	BC501	CC			NIM A527(2004)512
Cester2013	EJ-309		CC	10bit/1GHz	NIM A719(2013)81
Cester2014	EJ-299-33		CC	12bit/250MHz	NIM A735(2014)202
D'Mellow2007	EJ301		CC, PGA	10bit/250MHz	NIM A578(2007)191
Esposito2004	stil, NE213		CC	12bit/200MHz	NIM A518(2004)626
Flaska2007	BC-501A		CC	8bit/5GHz	NIM A577(2007)654
Flaska2009	BC-253A		CC	$12 \mathrm{bit} / 250 \mathrm{MHz}$	NIM A599(2009)221
Flaska2013	EJ-309		CC	$10 \div 14 \mathrm{bit} / 0.25 \div 2 \mathrm{GHz}$	NIM A729(2013)456
Gamage2011	BC501A		PGA,CC,NGMA,SD	12bit/500MHz	NIM A642(2011)78
Guerrero2008	BC501A		NGMA	8bit/1GHz	NIM A597(2008)212
Hawkes2013	cust. plast.		shape study	8bit/2.5GHz	NIM A729(2013)522
Hellesen2013	BC400, NE213		CC	$12 \mathrm{bit} / 2 \mathrm{GHz}$	NIM A720(2013)135
Heltsley1988	NE213	CC			NIM A263(1988)441
Kaplan2013	EJ309		CC	12bit/250MHz	NIM A729(2013)463
Kaschuck2005	ant,stil,NE213		CC	12bit/200MHz	NIM A551(2005)420

Selected n- γ PSD literature (2)

	Scint.	Analog	Digital	ADC	Ref.
Kalyna1970	NE213	ZC			NIM 88(1970)277
Jastaniah2002	BC523A		RT,ToT	$8 \mathrm{bit} / 500 \mathrm{MHz}$	NIM A517(2004)202
Jhingan2008	BC501	CC			NIM A585(2008)165
Pai1989	NE213				NIM A278(1989)749
Pawelzak2013	EJ309		CC	$12 \mathrm{bit} / 200 \mathrm{MHz}$	NIM A711(2013)21
Savran2010	BC501A	ZC	WCC, ZC, CC	$12 \mathrm{bbit} / 500 \mathrm{MHz}$	NIM A624(2010)675 $/ 100 \mathrm{MHz}$
Söderstrom2008	BC501	NIM A594(2008)79			
Wolski1995	BC501A		ZC	NIM A360(1995)584	
Nakhostin2010	NE213	ZC		$8 \mathrm{bit} / 1 \mathrm{GHz}$	NIM A621(2010)498
Roush1964	NE213	ZC	ZC, CC	$14 \mathrm{bit} / 100 \mathrm{MHz}$	NIM 31(1964)112
Söderstrom2008	BC501	CC	CC	$12 \mathrm{bit} / 250 \mathrm{MHz}$	NIM A678(2008)79
Stevanato2012	LaBr(Ce)	wavelets	$12 \mathrm{bit} / 100 \mathrm{MHz}$	NIM A599(2009)66	
Yousefi2009	phoswich for β / γ disc.		CC	$14 \mathrm{bit} / 200 \mathrm{MHz}$	NIM A668(2012)88
Zaitseva2012	cust. plast.				

$\mathrm{CC}=$ charge comparison
WCC=weigthed charge comparison (see Gatti1962)
ZC=zero crossing
ToT=Time over threshold
NGMA=neutron gamma model analysis (a.k.a true shape)
PGA=pulse gradient analysis
$\mathrm{SD}=$ simplified digital charge collection
$\mathrm{RT}=$ rise time
IMAX=maximum of current (anode) signal
85 of 92

Summary

- Many advantages: digitizers are going to stay with us;

Summary

- Many advantages: digitizers are going to stay with us;
- Already used on large scale (e.g. γ 's: AGATA, GRETINA; HCP: FAZIA, GARFIELD...many more planned/developed)

Summary

- Many advantages: digitizers are going to stay with us;
- Already used on large scale (e.g. γ 's: AGATA, GRETINA; HCP: FAZIA, GARFIELD...many more planned/developed)
- Two important things to keep in mind:

Summary

- Many advantages: digitizers are going to stay with us;
- Already used on large scale (e.g. γ 's: AGATA, GRETINA; HCP: FAZIA, GARFIELD...many more planned/developed)
- Two important things to keep in mind:
- Sampling ADCs can add noise to your signal (ENOB)

Summary

- Many advantages: digitizers are going to stay with us;
- Already used on large scale (e.g. γ 's: AGATA, GRETINA; HCP: FAZIA, GARFIELD...many more planned/developed)
- Two important things to keep in mind:
- Sampling ADCs can add noise to your signal (ENOB)
- Issues related to signal reconstruction (artifacts, interpolation noise, etc.) $\left(F_{s}\right)$

Summary

- Many advantages: digitizers are going to stay with us;
- Already used on large scale (e.g. γ 's: AGATA, GRETINA; HCP: FAZIA, GARFIELD...many more planned/developed)
- Two important things to keep in mind:
- Sampling ADCs can add noise to your signal (ENOB)
- Issues related to signal reconstruction (artifacts, interpolation noise, etc.) $\left(F_{s}\right)$
- Be aware when you are time averaging (e.g. energy estimation) and when instead your info is localized in time and more prone to noise (e.g. timing, some PSD algorithms).

Summary

- Many advantages: digitizers are going to stay with us;
- Already used on large scale (e.g. γ 's: AGATA, GRETINA; HCP: FAZIA, GARFIELD...many more planned/developed)
- Two important things to keep in mind:
- Sampling ADCs can add noise to your signal (ENOB)
- Issues related to signal reconstruction (artifacts, interpolation noise, etc.) $\left(F_{s}\right)$
- Be aware when you are time averaging (e.g. energy estimation) and when instead your info is localized in time and more prone to noise (e.g. timing, some PSD algorithms).
- we can learn from > years experience in imaging and telecommunication (cubic convolution, splines, smoothing splines, wavelets,...)... literature is rich on this topic (some papers in the references of these lessons).

Summary

- Many advantages: digitizers are going to stay with us;
- Already used on large scale (e.g. γ 's: AGATA, GRETINA; HCP: FAZIA, GARFIELD...many more planned/developed)
- Two important things to keep in mind:
- Sampling ADCs can add noise to your signal (ENOB)
- Issues related to signal reconstruction (artifacts, interpolation noise, etc.) $\left(F_{s}\right)$
- Be aware when you are time averaging (e.g. energy estimation) and when instead your info is localized in time and more prone to noise (e.g. timing, some PSD algorithms).
- we can learn from > years experience in imaging and telecommunication (cubic convolution, splines, smoothing splines, wavelets,...)... literature is rich on this topic (some papers in the references of these lessons).
- Sometimes better use your human/technical resources (if ${ }_{86}$ aryailable!) to design your own digitizer

GARFIELD+RCo at LNL: digitizers [Pasquali2007]

- 1 channel/board
- 12 bit; 125 MSPS
- 9.5 ENOB
- sel. polarity

GARFIELD+RCo at LNL: digitizers [Pasquali2007]

- 1 channel/board
- 12 bit; 125 MSPS
- 9.5 ENOB
- sel. polarity

GARFIELD+RCo at LNL: new digitizers (start 2011)

- 2 channel/board
- 14 bit; 125 MSPS
- 11.5 ENOB
- adj. DC offset

New digitizer

- design: Stefano Meneghini (INFN-Bo), Luigi Bardelli, Maurizio Bini, G.P.
- 14 bit; 125 MSPS;
- two coarse dynamic ranges (better SNR)+ fine gain (12 bit DAC); adjustable range from 100 mV to 10 V
- DC coupled
- adjustable DC offset (polarity selection)
- two channels per board (sampling clocks have opposite phase)
- FPGA centric
- cost: about 300 euros/channel
- DSP: ADSP2189N; FPGA: Altera Cyclone III; Clock gen: AD9572
- VCA: AD8337; ADC: AD9255

Thank you!

Backup slides

Quantization noise: a picture

- comes from second step of A/D conversion (quantization)
- subtract quantized and not-yet-quantized signals:

- the difference is usually correlated to the input for simple signals, e.g. sine (cfr. exercise with pClasses test_quant_noise() in test.C)

Quantization noise: some math

- N-bit ADC $\Longrightarrow 2^{\mathrm{N}}$ possible values $\left(0 \div 2^{\mathrm{N}}-1\right)$;

Quantization noise: some math

- N-bit ADC $\Longrightarrow 2^{\mathrm{N}}$ possible values $\left(0 \div 2^{\mathrm{N}}-1\right)$;
- quantized values \neq "exact values" : $e(t)=x_{c}(t)-\mathcal{Q}\left\{x_{c}(t)\right\} \neq 0$

Quantization noise: some math

- N-bit ADC $\Longrightarrow 2^{\mathrm{N}}$ possible values $\left(0 \div 2^{\mathrm{N}}-1\right)$;
- quantized values \neq "exact values": $e(t)=x_{c}(t)-\mathcal{Q}\left\{x_{c}(t)\right\} \neq 0$
- $e(t)$ (quantization error, neglecting sampling) varies with time;

Quantization noise: some math

- N -bit ADC $\Longrightarrow 2^{\mathrm{N}}$ possible values $\left(0 \div 2^{\mathrm{N}}-1\right.$);
- quantized values \neq "exact values": $e(t)=x_{c}(t)-\mathcal{Q}\left\{x_{c}(t)\right\} \neq 0$
- $e(t)$ (quantization error, neglecting sampling) varies with time;

- mean square value of $e: \overline{e^{2}(t)}=\frac{s}{q} \int_{-q / 2 s}^{+q / 2 s}(s t)^{2} \mathrm{~d} t=\frac{q^{2}}{12}$

Quantization noise: some math

- N -bit ADC $\Longrightarrow 2^{\mathrm{N}}$ possible values $\left(0 \div 2^{\mathrm{N}}-1\right)$;
- quantized values \neq "exact values" : $e(t)=x_{c}(t)-\mathcal{Q}\left\{x_{c}(t)\right\} \neq 0$
- $e(t)$ (quantization error, neglecting sampling) varies with time;

- mean square value of $e: \overline{e^{2}(t)}=\frac{s}{q} \int_{-q / 2 s}^{+q / 2 s}(s t)^{2} \mathrm{~d} t=\frac{q^{2}}{12}$
- $q=R / 2^{\mathrm{N}} ; \mathrm{R}=$ range in Volt (take $R=2^{\mathrm{N}}$ to get the equivalent in bits);

Quantization noise: some math

- N -bit $\mathrm{ADC} \Longrightarrow 2^{\mathrm{N}}$ possible values $\left(0 \div 2^{\mathrm{N}}-1\right)$;
- quantized values \neq "exact values" : $e(t)=x_{c}(t)-\mathcal{Q}\left\{x_{c}(t)\right\} \neq 0$
- $e(t)$ (quantization error, neglecting sampling) varies with time;

- mean square value of $e: \overline{e^{2}(t)}=\frac{s}{q} \int_{-q / 2 s}^{+q / 2 s}(s t)^{2} \mathrm{~d} t=\frac{q^{2}}{12}$
- $q=R / 2^{\mathrm{N}} ; \mathrm{R}=$ range in Volt (take $R=2^{\mathrm{N}}$ to get the equivalent in bits);
- rms value $\frac{q}{\sqrt{12}}$ same as uniform distribution in $(-q / 2, q / 2)$

Quantization noise: frequency spectrum

- quantized levels "close enough" + complex signal (e.g. speech) \Longrightarrow difference fluctuates randomly from sample to sample [Oppenheim10];

Quantization noise: frequency spectrum

- quantized levels "close enough" + complex signal (e.g. speech) \Longrightarrow difference fluctuates randomly from sample to sample [Oppenheim10];
- also true for simple signals + wide BW noise (detector pulse!);

Quantization noise: frequency spectrum

- quantized levels "close enough" + complex signal (e.g. speech) \Longrightarrow difference fluctuates randomly from sample to sample [Oppenheim10];
- also true for simple signals + wide BW noise (detector pulse!);
- a (almost always) good approximation: constant frequency spectrum (white spectral density) in ($0, \frac{F_{s}}{2}$)

Quantization noise: frequency spectrum

- quantized levels "close enough" + complex signal (e.g. speech) \Longrightarrow difference fluctuates randomly from sample to sample [Oppenheim10];
- also true for simple signals + wide BW noise (detector pulse!);
- a (almost always) good approximation: constant frequency spectrum (white spectral density) in ($0, \frac{F_{s}}{2}$)
- our quant. noise model: "white" noise of variance $\sigma_{Q}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{N}}}\right)^{2}$

Quantization noise: frequency spectrum

- quantized levels "close enough" + complex signal (e.g. speech) \Longrightarrow difference fluctuates randomly from sample to sample [Oppenheim10];
- also true for simple signals + wide BW noise (detector pulse!);
- a (almost always) good approximation: constant frequency spectrum (white spectral density) in ($0, \frac{F_{s}}{2}$)
- our quant. noise model: "white" noise of variance $\sigma_{Q}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{N}}}\right)^{2}$
- \Longrightarrow "white" noise of spectral density $w=2 \frac{\sigma_{Q}^{2}}{F_{s}}=\frac{1}{6 F_{s}}\left(\frac{R}{2^{\mathrm{N}}}\right)^{2}$ in ($0, \frac{F_{s}}{2}$)

Ideal ADC: Signal-to-Noise Ratio (SNR)

- SNR: ratio of rms signal amplitude to rms noise amplitude

Ideal ADC: Signal-to-Noise Ratio (SNR)

- SNR: ratio of rms signal amplitude to rms noise amplitude
- Consider a sine wave with $V_{p p}=F S$:

$$
S N R=\frac{\overline{v_{s i n e}^{2}}}{\overline{v_{q}^{2}}}=\frac{F S}{2 \sqrt{2}} \frac{\sqrt{12}}{q}=\sqrt{\frac{3}{2}} \frac{F S}{q}
$$

Ideal ADC: Signal-to-Noise Ratio (SNR)

- SNR: ratio of rms signal amplitude to rms noise amplitude
- Consider a sine wave with $V_{p p}=F S$:

$$
S N R=\frac{\overline{v_{\text {sine }}^{2}}}{\overline{v_{q}^{2}}}=\frac{F S}{2 \sqrt{2}} \frac{\sqrt{12}}{q}=\sqrt{\frac{3}{2}} \frac{F S}{q}
$$

- useful to calculate SNR in dB:

$$
\begin{gathered}
S N R(d B)=20 \log _{10}\left(\frac{F S}{q}\right)+20 \log _{10}\left(\sqrt{\frac{3}{2}}\right)= \\
=20 \log _{10}\left(2^{N}\right)+1.76=6.02 N+1.76
\end{gathered}
$$

Ideal ADC: Signal-to-Noise Ratio (SNR)

- SNR: ratio of rms signal amplitude to rms noise amplitude
- Consider a sine wave with $V_{p p}=F S$:

$$
S N R=\frac{\overline{v_{s i n e}^{2}}}{\overline{v_{q}^{2}}}=\frac{F S}{2 \sqrt{2}} \frac{\sqrt{12}}{q}=\sqrt{\frac{3}{2}} \frac{F S}{q}
$$

- useful to calculate SNR in dB :

$$
\begin{gathered}
S N R(d B)=20 \log _{10}\left(\frac{F S}{q}\right)+20 \log _{10}\left(\sqrt{\frac{3}{2}}\right)= \\
=20 \log _{10}\left(2^{N}\right)+1.76=6.02 N+1.76
\end{gathered}
$$

- Some values:

N (bits)	SNR (dB)
10	61.96
12	74.00
14	86.04

as a rule of thumb: 6 dB per bit!

Real ADC and noise...

- we know that a real ADC can be modelled as an "ideal" ADC plus a noise generator adding noise to the input (see figure);

REAL ADC

Real ADC and noise...

- we know that a real ADC can be modelled as an "ideal" ADC plus a noise generator adding noise to the input (see figure);

- now we can include quantization noise into the generator and assume no need for quantization in the "ideal" ADC;

Real ADC and noise...

- we know that a real ADC can be modelled as an "ideal" ADC plus a noise generator adding noise to the input (see figure);

- now we can include quantization noise into the generator and assume no need for quantization in the "ideal" ADC;
- real ADC noise has variance $\sigma_{\text {eff }}^{2}>\sigma_{Q}^{2}$

Actual Noise: SINAD

- to express the actual amount of added noise manufacturers quote SINAD (signal-to-noise-and-distortion) or ENOB (effective-number-of-bits)

Actual Noise: SINAD

- to express the actual amount of added noise manufacturers quote SINAD (signal-to-noise-and-distortion) or ENOB (effective-number-of-bits)
- SINAD: take Fourier Transform of sampled sine wave ($V_{p p} \approx F S$).

Actual Noise: SINAD

- to express the actual amount of added noise manufacturers quote SINAD (signal-to-noise-and-distortion) or ENOB (effective-number-of-bits)
- SINAD: take Fourier Transform of sampled sine wave ($V_{p p} \approx F S$).
- signal power: from spectrum peak at signal frequency.

Actual Noise: SINAD

- to express the actual amount of added noise manufacturers quote SINAD (signal-to-noise-and-distortion) or ENOB (effective-number-of-bits)
- SINAD: take Fourier Transform of sampled sine wave ($V_{p p} \approx F S$).
- signal power: from spectrum peak at signal frequency.
- noise-and-distortion: integral of all other components (harmonics, broadband noise)

Actual Noise: SINAD

- to express the actual amount of added noise manufacturers quote SINAD (signal-to-noise-and-distortion) or ENOB (effective-number-of-bits)
- SINAD: take Fourier Transform of sampled sine wave ($V_{p p} \approx F S$).
- signal power: from spectrum peak at signal frequency.
- noise-and-distortion: integral of all other components (harmonics, broadband noise)
- SINAD takes into account the dynamic (AC) performance

Actual Noise: ENOB

- textbook definition of ENOB: start from ideal SNR

$$
\operatorname{SNR}(d B)=20 \log _{10}\left(2^{N}\right)+1.76=6.02 N+1.76
$$

Actual Noise: ENOB

- textbook definition of ENOB: start from ideal SNR

$$
\operatorname{SNR}(d B)=20 \log _{10}\left(2^{N}\right)+1.76=6.02 N+1.76
$$

it's useful to invert it: we get a definition of N

$$
N=\frac{S N R-1.76}{6.02}
$$

Actual Noise: ENOB

- textbook definition of ENOB: start from ideal SNR

$$
S N R(d B)=20 \log _{10}\left(2^{N}\right)+1.76=6.02 N+1.76
$$

it's useful to invert it: we get a definition of N

$$
N=\frac{S N R-1.76}{6.02}
$$

substituting the actual SNR (SINAD) to ideal we obtain
"effective" number of bits (ENOB)

$$
E N O B \equiv \frac{S I N A D-1.76}{6.02}
$$

Actual Noise: ENOB

- textbook definition of ENOB: start from ideal SNR

$$
\operatorname{SNR}(d B)=20 \log _{10}\left(2^{N}\right)+1.76=6.02 N+1.76
$$

it's useful to invert it: we get a definition of N

$$
N=\frac{S N R-1.76}{6.02}
$$

substituting the actual SNR (SINAD) to ideal we obtain "effective" number of bits (ENOB)

$$
E N O B \equiv \frac{S I N A D-1.76}{6.02}
$$

- ENOB: realistic estimate of ADC resolution, $E N O B<N$

Actual Noise: ENOB

- textbook definition of ENOB: start from ideal SNR

$$
\operatorname{SNR}(d B)=20 \log _{10}\left(2^{N}\right)+1.76=6.02 N+1.76
$$

it's useful to invert it: we get a definition of N

$$
N=\frac{S N R-1.76}{6.02}
$$

substituting the actual SNR (SINAD) to ideal we obtain "effective" number of bits (ENOB)

$$
E N O B \equiv \frac{S I N A D-1.76}{6.02}
$$

- $E N O B$: realistic estimate of $A D C$ resolution, $E N O B<N$
- two ADC's with same ENOB and different N give similar performances

Actual noise: ENOB in nuclear physics

- my definition of ENOB:

Actual noise: ENOB in nuclear physics

- my definition of ENOB:

ENOB is the number you need instead of N in $\sigma_{Q}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{N}}}\right)^{2}$
to get $\sigma_{\text {eff }}^{2}$, i.e. $\sigma_{\text {eff }}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{ENOB}}}\right)^{2}$

$$
\mathrm{ENOB}=\log _{2}\left(\frac{R}{\sqrt{12} \sigma_{\text {eff }}}\right)
$$

Actual noise: ENOB in nuclear physics

- my definition of ENOB:

ENOB is the number you need instead of N in $\sigma_{Q}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{N}}}\right)^{2}$
to get $\sigma_{\text {eff }}^{2}$, i.e. $\sigma_{\text {eff }}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{ENOB}}}\right)^{2}$

$$
\mathrm{ENOB}=\log _{2}\left(\frac{R}{\sqrt{12} \sigma_{\text {eff }}}\right)
$$

- the two defs are equivalent if $\sigma_{\text {eff }}$ is dominant contribution to SINAD (usually the case in nuclear physics).

Actual noise: ENOB in nuclear physics

- my definition of ENOB:

ENOB is the number you need instead of N in $\sigma_{Q}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{N}}}\right)^{2}$
to get $\sigma_{\text {eff }}^{2}$, i.e. $\sigma_{\text {eff }}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{ENOB}}}\right)^{2}$

$$
\mathrm{ENOB}=\log _{2}\left(\frac{R}{\sqrt{12} \sigma_{\text {eff }}}\right)
$$

- the two defs are equivalent if $\sigma_{\text {eff }}$ is dominant contribution to SINAD (usually the case in nuclear physics).
- properties of ENOB:

Actual noise: ENOB in nuclear physics

- my definition of ENOB:

ENOB is the number you need instead of N in $\sigma_{Q}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{N}}}\right)^{2}$
to get $\sigma_{\text {eff }}^{2}$, i.e. $\sigma_{\text {eff }}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{ENOB}}}\right)^{2}$

$$
\mathrm{ENOB}=\log _{2}\left(\frac{R}{\sqrt{12} \sigma_{\text {eff }}}\right)
$$

- the two defs are equivalent if $\sigma_{\text {eff }}$ is dominant contribution to SINAD (usually the case in nuclear physics).
- properties of ENOB:

1. doubling $\sigma_{\text {eff }}$ we loose 1 bit (1 unit in ENOB);

Actual noise: ENOB in nuclear physics

- my definition of ENOB:

ENOB is the number you need instead of N in $\sigma_{Q}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{N}}}\right)^{2}$
to get $\sigma_{\text {eff }}^{2}$, i.e. $\sigma_{\text {eff }}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{ENOB}}}\right)^{2}$

$$
\mathrm{ENOB}=\log _{2}\left(\frac{R}{\sqrt{12} \sigma_{\text {eff }}}\right)
$$

- the two defs are equivalent if $\sigma_{\text {eff }}$ is dominant contribution to SINAD (usually the case in nuclear physics).
- properties of ENOB:

1. doubling σ_{R} eff we loose 1 bit (1 unit in ENOB);
2. $\sigma_{\text {eff }} \propto \frac{R}{2^{\mathrm{ENOB}}}$

Actual noise: ENOB in nuclear physics

- my definition of ENOB:

ENOB is the number you need instead of N in $\sigma_{Q}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{N}}}\right)^{2}$
to get $\sigma_{\text {eff }}^{2}$, i.e. $\sigma_{\text {eff }}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{ENOB}}}\right)^{2}$

$$
\mathrm{ENOB}=\log _{2}\left(\frac{R}{\sqrt{12} \sigma_{\text {eff }}}\right)
$$

- the two defs are equivalent if $\sigma_{\text {eff }}$ is dominant contribution to SINAD (usually the case in nuclear physics).
- properties of ENOB:

1. doubling $\sigma_{\text {eff }}$ we loose 1 bit (1 unit in ENOB);
2. $\sigma_{\text {eff }} \propto \frac{R}{2^{\mathrm{ENOB}}}$
3. in bits $\left(R=2^{\mathrm{N}}\right)$ we get $\sigma_{\text {eff }} \propto 2^{\mathrm{N}-\mathrm{ENOB}} \Longrightarrow \mathrm{N}-$ ENOB controls how much noise we get;

ENOB: equivalence of the two definitions

$$
\begin{equation*}
\sigma_{\text {eff }}^{2}=\frac{1}{12}\left(\frac{R}{2^{\mathrm{ENOB}}}\right)^{2} \Longrightarrow \mathrm{ENOB}=\frac{1}{2} \log _{2}\left(\frac{R^{2}}{12 \sigma_{\text {eff }}^{2}}\right) \tag{*}
\end{equation*}
$$

Sine wave, amplitude $R \Longrightarrow V_{r m s}=\frac{R}{2 \sqrt{2}}$
If $\sigma_{\text {eff }}$ only contribution to SNR: SNR $=\frac{V_{r m s}}{\sigma_{\text {eff }}}=\frac{R}{2 \sqrt{2} \sigma_{\text {eff }}}$.
Invert and obtain: $\frac{R^{2}}{\sigma_{\text {eff }}^{2}}=(2 \sqrt{2} S N R)^{2}$ and substitute in $\left(^{*}\right)$ to find ENOB $=\frac{1}{2} \log _{2} \frac{(2 \sqrt{2} S N R)^{2}}{12}=\log _{2} S N R-\log _{2} \frac{\sqrt{12}}{2 \sqrt{2}}=\log _{2} S N R-\log _{2} \sqrt{\frac{3}{2}}$

1. multiply and divide by $\log _{10} 2=0.301$, then use \log rules to change log base to 10 ;
2. multiply and divide by 20 , so that $20 \log _{10} S N R=S N R(d b)$.

ENOB $=\frac{\operatorname{SNR}(d B)-20 \log _{10} \sqrt{1.5}}{20 \log _{10} 2}=\frac{\operatorname{SNR}(d B)-1.76}{6.02}$ Q.E.D.

Shannon: Ideal continuous-discrete time converter

- Ideal C/D converter: $x_{c}(t) \Longrightarrow x[n]=x_{c}\left(n T_{s}\right)$ (no quantization)

Figure 4.1 Block diagram
representation of an ideal
continuous-to-discrete-time (C/D)
converter.

Shannon: Ideal continuous-discrete time converter

- Ideal C/D converter: $x_{c}(t) \Longrightarrow x[n]=x_{c}\left(n T_{s}\right)$ (no quantization)

Figure 4.1 Block diagram
representation of an ideal
continuous-to-discrete-time (C/D) converter.

- let's divide C/D conversion into two steps [Oppenheim10]:

Shannon: Ideal continuous-discrete time converter

- Ideal C/D converter: $x_{c}(t) \Longrightarrow x[n]=x_{c}\left(n T_{s}\right)$ (no quantization)

Figure 4.1 Block diagram
representation of an ideal continuous-to-discrete-time (C/D) converter.

- let's divide C/D conversion into two steps [Oppenheim10]:

1. modulation by an impulse train $s(t)=\sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{s}\right) \Longrightarrow$

$$
x_{s}(t)=x_{c}(t) s(t)=\sum_{n=-\infty}^{+\infty} x_{c}\left(n T_{s}\right) \delta\left(t-n T_{s}\right)
$$

Shannon: Ideal continuous-discrete time converter

- Ideal C/D converter: $x_{c}(t) \Longrightarrow x[n]=x_{c}\left(n T_{s}\right)$ (no quantization)

- let's divide C/D conversion into two steps [Oppenheim10]:

1. modulation by an impulse train $s(t)=\sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{s}\right) \Longrightarrow$ $x_{s}(t)=x_{c}(t) s(t)=\sum_{n=-\infty}^{+\infty} x_{c}\left(n T_{s}\right) \delta\left(t-n T_{s}\right)$
2. conversion of $x_{s}(t)$ into $x[n]$ ($x[n]=$ area of n-th pulse).

Shannon: Ideal continuous-discrete time converter

- Ideal C/D converter: $x_{c}(t) \Longrightarrow x[n]=x_{c}\left(n T_{s}\right)$ (no quantization)

- let's divide C/D conversion into two steps [Oppenheim10]:

1. modulation by an impulse train $s(t)=\sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{s}\right) \Longrightarrow$ $x_{s}(t)=x_{c}(t) s(t)=\sum_{n=-\infty}^{+\infty} x_{c}\left(n T_{s}\right) \delta\left(t-n T_{s}\right)$
2. conversion of $x_{s}(t)$ into $x[n]$ ($x[n]=$ area of n-th pulse).

Shannon: signal reconstruction

- $x_{s}(t)$ is defined also for $t \neq n T_{s}$ (though it is $=0$).

Shannon: signal reconstruction

- $x_{s}(t)$ is defined also for $t \neq n T_{s}$ (though it is $=0$).
- Trick: move to frequency domain $\left(\Omega_{s}=2 \pi / T_{s}\right)$ where we calculate the Fourier Transform ($\mathcal{F \mathcal { T }})$ of our comb $s(t)$:

$$
S(j \Omega)=\mathcal{F} \mathcal{T}\{s(t)\}=\frac{2 \pi}{T_{s}} \sum_{k=-\infty}^{+\infty} \delta\left(\Omega-k \Omega_{s}\right)
$$

Shannon: signal reconstruction

- $x_{s}(t)$ is defined also for $t \neq n T_{s}$ (though it is $=0$).
- Trick: move to frequency domain $\left(\Omega_{s}=2 \pi / T_{s}\right)$ where we calculate the Fourier Transform ($\mathcal{F \mathcal { T }}$) of our comb $s(t)$:

$$
S(j \Omega)=\mathcal{F} \mathcal{T}\{s(t)\}=\frac{2 \pi}{T_{s}} \sum_{k=-\infty}^{+\infty} \delta\left(\Omega-k \Omega_{s}\right)
$$

- well known property of $\mathcal{F} \mathcal{T}$: product in t-domain (f-domain) it's equivalent to convolution in f -domain (t-domain):

$$
\begin{aligned}
& X_{s}(j \Omega)=\mathcal{F} \mathcal{T}\left\{x_{s}(t)\right\}=\frac{1}{2 \pi} X_{c}(j \Omega) * \dot{S}(j \Omega)= \\
& \frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(\Omega-k \Omega_{s}\right)
\end{aligned}
$$

Shannon: signal reconstruction

- $x_{s}(t)$ is defined also for $t \neq n T_{s}$ (though it is $=0$).
- Trick: move to frequency domain $\left(\Omega_{s}=2 \pi / T_{s}\right)$ where we calculate the Fourier Transform $(\mathcal{F} \mathcal{T})$ of our comb $s(t)$:

$$
S(j \Omega)=\mathcal{F} \mathcal{T}\{s(t)\}=\frac{2 \pi}{T_{s}} \sum_{k=-\infty}^{+\infty} \delta\left(\Omega-k \Omega_{s}\right)
$$

- well known property of $\mathcal{F T}$: product in t-domain (f-domain) it's equivalent to convolution in f -domain (t -domain):

$$
\begin{aligned}
& X_{s}(j \Omega)=\mathcal{F} \mathcal{T}\left\{x_{s}(t)\right\}=\frac{1}{2 \pi} X_{c}(j \Omega) * S(j \Omega)= \\
& \frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(\Omega-k \Omega_{s}\right)
\end{aligned}
$$

- the $\mathcal{F} \mathcal{T}\left\{x_{s}(t)\right\}$ is made of f -shifted images of $\mathcal{F} \mathcal{T}\left\{x_{c}(t)\right\}$ (exploiting linearity of convolution and exploiting the result $\left.X_{c}(j \Omega) * \delta\left(\Omega-k \Omega_{s}\right)=X_{c}\left(\Omega-k \Omega_{s}\right)\right)$

Shannon: periodic frequency spectrum

$$
X_{s}(j \Omega)=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(\Omega-k \Omega_{s}\right)
$$

original $X_{c}(j \Omega)$ plus ∞ copies shifted by $k \Omega_{s}$

Shannon: periodic frequency spectrum

$$
X_{s}(j \Omega)=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} X_{c}\left(\Omega-k \Omega_{s}\right)
$$

original $X_{c}(j \Omega)$ plus ∞ copies shifted by $k \Omega_{s}$

- To re-construct the original $\mathcal{F} \mathcal{T}$: use frequency-selective filter keeping the original and discarding the copies

Shannon: periodic frequency spectrum

$$
x_{s}(j \Omega)=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} x_{c}\left(\Omega-k \Omega_{s}\right)
$$

original $X_{c}(j \Omega)$ plus ∞ copies shifted by $k \Omega_{s}$

- To re-construct the original $\mathcal{F} \mathcal{T}$: use frequency-selective filter keeping the original and discarding the copies
- use inverse $\mathcal{F} \mathcal{T}$ to obtain $x_{c}(t)$

(c)

Shannon: periodic frequency spectrum

$$
x_{s}(j \Omega)=\frac{1}{T_{s}} \sum_{k=-\infty}^{+\infty} x_{c}\left(\Omega-k \Omega_{s}\right)
$$

original $X_{c}(j \Omega)$ plus ∞ copies shifted by $k \Omega_{s}$

- To re-construct the original $\mathcal{F T}$: use frequency-selective filter keeping the original and discarding the copies
- use inverse $\mathcal{F} \mathcal{T}$ to obtain $x_{c}(t)$
- copies must NOT overlap \Longrightarrow if Ω_{N} is maximum frequency in $x_{c}(t)$ then we want

(c)

$$
\Omega_{s}-\Omega_{N} \geq \Omega_{N} \Longrightarrow \Omega_{s} \geq 2 \Omega_{N}
$$

Shannon: filtering out images in f-domain

- t-domain reconstruction of limited bandwidth $\left(B W<F_{N}\right)$ signal $x(t)$ - sampled at $F_{s}>2 F_{N}-$ from samples $x[n]=x\left(n T_{s}\right)$:

Shannon: filtering out images in f-domain

- t-domain reconstruction of limited bandwidth ($\mathrm{BW}<F_{N}$) signal $x(t)$ - sampled at $F_{s}>2 F_{N}-$ from samples $x[n]=x\left(n T_{s}\right)$:
- First: construct a pseudo-continuous function

$$
x_{s}(t)=\sum_{n} x[n] \delta\left(t-n T_{s}\right) \text { (pulse train) }
$$

Shannon: filtering out images in f-domain

- t-domain reconstruction of limited bandwidth ($\mathrm{BW}<F_{N}$) signal $x(t)$ - sampled at $F_{s}>2 F_{N}$ - from samples $x[n]=x\left(n T_{s}\right)$:
- First: construct a pseudo-continuous function $x_{s}(t)=\sum_{n} x[n] \delta\left(t-n T_{s}\right)$ (pulse train)
- we know $\mathcal{F} \mathcal{T}$ of $x_{s}(t)$ is made of shifted copies of some $X_{r}(j \Omega)$, centered at $n F_{s}$ with $F_{s}=1 / T_{s}$

Shannon: filtering out images in f-domain

- t-domain reconstruction of limited bandwidth ($\mathrm{BW}<F_{N}$) signal $x(t)$ - sampled at $F_{s}>2 F_{N}$ - from samples $x[n]=x\left(n T_{s}\right)$:
- First: construct a pseudo-continuous function $x_{s}(t)=\sum_{n} x[n] \delta\left(t-n T_{s}\right)$ (pulse train)
- we know $\mathcal{F T}$ of $x_{s}(t)$ is made of shifted copies of some $X_{r}(j \Omega)$, centered at $n F_{s}$ with $F_{s}=1 / T_{s}$
- first, filter out the extra images in f-domain (those with $n \neq 0$) multiplying \times brick-wall filter response (cut at $f_{\max }$)

Shannon: filtering out images in f-domain

- t-domain reconstruction of limited bandwidth ($\mathrm{BW}<F_{N}$) signal $x(t)$ - sampled at $F_{s}>2 F_{N}$ - from samples $x[n]=x\left(n T_{s}\right)$:
- First: construct a pseudo-continuous function $x_{s}(t)=\sum_{n} x[n] \delta\left(t-n T_{s}\right)$ (pulse train)
- we know $\mathcal{F T}$ of $x_{s}(t)$ is made of shifted copies of some $X_{r}(j \Omega)$, centered at $n F_{s}$ with $F_{s}=1 / T_{s}$
- first, filter out the extra images in f-domain (those with $n \neq 0$) multiplying \times brick-wall filter response (cut at $f_{\max }$)

- multiplication in f-domain \Longrightarrow convolution with filter's impulse response (right picture) in t-domain (N.B: $T_{s}=1$ in right panel)

Sinc interpolation

- in t-domain, convolution of $x_{s}(t)$ with $\mathcal{F} \mathcal{T}^{-1}$ of brick-wall f-response: $\operatorname{sinc}(t)=\frac{\sin \left(\pi t / T_{s}\right)}{\pi t / T_{s}}$ (normalized $\left.\operatorname{sinc}\right)$. We assumed a cut-off at $f_{\max }=\frac{1}{2} \frac{1}{T_{s}}$

$$
\begin{aligned}
x_{r}(t)=x_{s}(t) * \operatorname{sinc}(t) & =\sum_{n} x[n] \int_{-\infty}^{+\infty} \operatorname{sinc}(x) \delta\left(t-n T_{s}-x\right) d x= \\
& =\sum_{n} x[n] \operatorname{sinc}\left(t-n T_{s}\right)
\end{aligned}
$$

Sinc interpolation

- in t-domain, convolution of $x_{s}(t)$ with $\mathcal{F} \mathcal{T}^{-1}$ of brick-wall f-response: $\operatorname{sinc}(t)=\frac{\sin \left(\pi t / T_{s}\right)}{\pi t / T_{s}}$ (normalized $\left.\operatorname{sinc}\right)$. We assumed a cut-off at $f_{\max }=\frac{1}{2} \frac{1}{T_{s}}$

$$
\begin{aligned}
x_{r}(t)=x_{s}(t) * \operatorname{sinc}(t) & =\sum_{n} x[n] \int_{-\infty}^{+\infty} \operatorname{sinc}(x) \delta\left(t-n T_{s}-x\right) d x= \\
& =\sum_{n} x[n] \operatorname{sinc}\left(t-n T_{s}\right)
\end{aligned}
$$

- interpolation: for $t=m T_{s}$, $\operatorname{sinc}\left(m T_{s}-n T_{s}\right)=0 \forall m \in \mathbb{Z}$ except $m=n$ where $\operatorname{sinc}(0)=1 \Longrightarrow x\left(n T_{s}\right)=x[n] \Longrightarrow x_{r}(t)$ goes through known samples; in between we get "interpolated" values

Anti-aliasing stage: general remarks

- antialiasing filter: crucial pre-ADC element! Usually Low-Pass filter (Shannon Theorem!)

Anti-aliasing stage: general remarks

- antialiasing filter: crucial pre-ADC element! Usually Low-Pass filter (Shannon Theorem!)
- REMEMBER: ADC receives the output of the antialias, NOT the input of the digitizer (i.e. the original signal)!

Anti-aliasing stage: general remarks

- antialiasing filter: crucial pre-ADC element! Usually Low-Pass filter (Shannon Theorem!)
- REMEMBER: ADC receives the output of the antialias, NOT the input of the digitizer (i.e. the original signal)!
- role: to attenuate frequencies beyond $F_{s} / 2$ which would alias into (0, $F_{s} / 2$)

Anti-aliasing stage: general remarks

- antialiasing filter: crucial pre-ADC element! Usually Low-Pass filter (Shannon Theorem!)
- REMEMBER: ADC receives the output of the antialias, NOT the input of the digitizer (i.e. the original signal)!
- role: to attenuate frequencies beyond $F_{s} / 2$ which would alias into ($0, F_{s} / 2$)
- \Longrightarrow changes signal shape in t-domain (and of course its frequency content)

Anti-aliasing stage: general remarks

- antialiasing filter: crucial pre-ADC element! Usually Low-Pass filter (Shannon Theorem!)
- REMEMBER: ADC receives the output of the antialias, NOT the input of the digitizer (i.e. the original signal)!
- role: to attenuate frequencies beyond $F_{s} / 2$ which would alias into ($0, F_{s} / 2$)
- \Longrightarrow changes signal shape in t-domain (and of course its frequency content)
- the ideal antialias has a "brick wall" response cutting at $f_{c}=F_{s} / 2$

Anti-aliasing stage: general remarks

- a perfect brick wall response not possible in analog circuit...

Anti-aliasing stage: general remarks

- a perfect brick wall response not possible in analog circuit...
- ...actual filters have pass-band ripples, transition band not infinitely narrow (roll-off slope is finite), finite attenuation in stop-band...

Anti-aliasing stage: general remarks

- a perfect brick wall response not possible in analog circuit...
- ...actual filters have pass-band ripples, transition band not infinitely narrow (roll-off slope is finite), finite attenuation in stop-band...

Anti-aliasing stage: general remarks

- a perfect brick wall response not possible in analog circuit...
- ...actual filters have pass-band ripples, transition band not infinitely narrow (roll-off slope is finite), finite attenuation in stop-band...

Anti-aliasing stage: general remarks

- a perfect brick wall response not possible in analog circuit...
- ...actual filters have pass-band ripples, transition band not infinitely narrow (roll-off slope is finite), finite attenuation in stop-band...

Anti-aliasing stage: general remarks

- a perfect brick wall response not possible in analog circuit...
- ...actual filters have pass-band ripples, transition band not infinitely narrow (roll-off slope is finite), finite attenuation in stop-band...

O passband: f-interval where frequencies are unaltered

Anti-aliasing stage: general remarks

- a perfect brick wall response not possible in analog circuit...
- ...actual filters have pass-band ripples, transition band not infinitely narrow (roll-off slope is finite), finite attenuation in stop-band...

O passband: f-interval where frequencies are unaltered
O stopband: f-interval where frequencies are blocked

Anti-aliasing stage: general remarks

- a perfect brick wall response not possible in analog circuit...
- ...actual filters have pass-band ripples, transition band not infinitely narrow (roll-off slope is finite), finite attenuation in stop-band...

Anti-aliasing stage: general remarks

- a perfect brick wall response not possible in analog circuit...
- ...actual filters have pass-band ripples, transition band not infinitely narrow (roll-off slope is finite), finite attenuation in stop-band...

O passband: f-interval where frequencies are unaltered
O stopband: f-interval where frequencies are blocked
O transition band: between pass and stop bands (starts at the cutoff frequency)

O a fast roll-off is desired to separate frequencies (this usually completely spoils t-domain response! you can't have it all)

Anti-aliasing stage: general remarks

- a perfect brick wall response not possible in analog circuit...
- ...actual filters have pass-band ripples, transition band not infinitely narrow (roll-off slope is finite), finite attenuation in stop-band...

O passband: f-interval where frequencies are unaltered
O stopband: f-interval where frequencies are blocked
O transition band: between pass and stop bands (starts at the cutoff frequency)

O a fast roll-off is desired to separate frequencies (this usually completely spoils t-domain response! you can't have it all)

O constant passband gain desired (no passband ripple)

Anti-aliasing stage: general remarks

- a perfect brick wall response not possible in analog circuit...
- ...actual filters have pass-band ripples, transition band not infinitely narrow (roll-off slope is finite), finite attenuation in stop-band...

O passband: f-interval where frequencies are unaltered
O stopband: f-interval where frequencies are blocked
O transition band: between pass and stop bands (starts at the cutoff frequency)

O a fast roll-off is desired to separate frequencies (this usually completely spoils t-domain response! you can't have it all)

O constant passband gain desired (no passband ripple)

- N.B. attenuation usually not constant in stopband: stopband begins when a certain minimum attenuation is reached

Filter impulse, step and frequency response

- filter has: impulse, step and frequency response

Filter impulse, step and frequency response

- filter has: impulse, step and frequency response
- impulse response: filter output when input is a pulse (Dirac's δ)

Filter impulse, step and frequency response

- filter has: impulse, step and frequency response
- impulse response: filter output when input is a pulse (Dirac's δ)
- step response: filter output when input is a perfect step

Filter impulse, step and frequency response

- filter has: impulse, step and frequency response
- impulse response: filter output when input is a pulse (Dirac's δ)
- step response: filter output when input is a perfect step
- each one contains complete info about the filter

Filter impulse, step and frequency response

- filter has: impulse, step and frequency response
- impulse response: filter output when input is a pulse (Dirac's δ)
- step response: filter output when input is a perfect step
- each one contains complete info about the filter
- frequency response \Longleftrightarrow filter action on f-domain info

Filter impulse, step and frequency response

- filter has: impulse, step and frequency response
- impulse response: filter output when input is a pulse (Dirac's δ)
- step response: filter output when input is a perfect step
- each one contains complete info about the filter
- frequency response \Longleftrightarrow filter action on f-domain info
- step response \Longleftrightarrow filter action on t-domain info

Filter impulse, step and frequency response

- filter has: impulse, step and frequency response
- impulse response: filter output when input is a pulse (Dirac's δ)
- step response: filter output when input is a perfect step
- each one contains complete info about the filter
- frequency response \Longleftrightarrow filter action on f-domain info
- step response \Longleftrightarrow filter action on t-domain info
- time domain coded info: any sample contains some info

Filter impulse, step and frequency response

- filter has: impulse, step and frequency response
- impulse response: filter output when input is a pulse (Dirac's δ)
- step response: filter output when input is a perfect step
- each one contains complete info about the filter
- frequency response \Longleftrightarrow filter action on f-domain info
- step response \Longleftrightarrow filter action on t-domain info
- time domain coded info: any sample contains some info
- frequency domain coded info: relationship between many samples (no info in single sample)

Anti-aliasing stage: RC low pass stage [Horowitz1989]

- simple RC low pass $\Longrightarrow-3 \mathrm{~dB}$ cutoff at $\omega_{c}=1 / R C$; roll-off $=20$ $\mathrm{dB} /$ decade ($6 \mathrm{db} /$ octave);

Anti-aliasing stage: RC low pass stage [Horowitz1989]

- simple RC low pass $\Longrightarrow-3 \mathrm{~dB}$ cutoff at $\omega_{c}=1 / R C$; roll-off $=20$ $\mathrm{dB} /$ decade ($6 \mathrm{db} /$ octave);
- $20 \mathrm{~dB} \equiv \times 10 \Longrightarrow$ after two decades gain is 1% of DC value

Anti-aliasing stage: RC low pass stage [Horowitz1989]

- simple RC low pass $\Longrightarrow-3 \mathrm{~dB}$ cutoff at $\omega_{c}=1 / R C$; roll-off $=20$ $\mathrm{dB} /$ decade (6 db /octave);
- $20 \mathrm{~dB} \equiv \times 10 \Longrightarrow$ after two decades gain is 1% of DC value
- cascading $\mathrm{n} \times \mathrm{RC} \Longrightarrow$ increases slope ($\mathrm{n} \times 20 \mathrm{~dB} /$ decade)

Anti-aliasing stage: RC low pass stage [Horowitz1989]

- simple RC low pass $\Longrightarrow-3 \mathrm{~dB}$ cutoff at $\omega_{c}=1 / R C$; roll-off $=20$ $\mathrm{dB} /$ decade (6 db /octave);
- $20 \mathrm{~dB} \equiv \times 10 \Longrightarrow$ after two decades gain is 1% of DC value
- cascading $\mathrm{n} \times \mathrm{RC} \Longrightarrow$ increases slope ($\mathrm{n} \times 20 \mathrm{~dB} /$ decade)
- n is a.k.a. the number of "poles" (zeros at denominator in the transfer function, cfr. Laplace or Fourier transform)

Anti-aliasing stage: RC low pass stage [Horowitz1989]

- simple RC low pass $\Longrightarrow-3 \mathrm{~dB}$ cutoff at $\omega_{c}=1 / R C$; roll-off $=20$ $\mathrm{dB} /$ decade (6 db /octave);
- $20 \mathrm{~dB} \equiv \times 10 \Longrightarrow$ after two decades gain is 1% of DC value
- cascading $n \times R C \Longrightarrow$ increases slope ($n \times 20 d B /$ decade $)$
- n is a.k.a. the number of "poles" (zeros at denominator in the transfer function, cfr. Laplace or Fourier transform)
- however we don't get a sharper knee at -3dB cutoff: "many soft knees do not a hard knee make" (cit. Horowitz-Hill); this clearly 90 of ${ }_{92}$ appears when plotting response vs f / f_{c} (normalized frequency)

Anti-aliasing stage: Butterworth, Chebyshev, Bessel

- solution: active filters using amplifiers and feedback

Anti-aliasing stage: Butterworth, Chebyshev, Bessel

- solution: active filters using amplifiers and feedback
- one discovers that a flat passband response and a fast roll-off are in competion, we must trade in one for the other

Anti-aliasing stage: Butterworth, Chebyshev, Bessel

- solution: active filters using amplifiers and feedback
- one discovers that a flat passband response and a fast roll-off are in competion, we must trade in one for the other
- in filter theory multipole filters are classified, according to the compromises they make, as: Chebyshev, Butterworth and Bessel

Anti-aliasing stage: Butterworth, Chebyshev, Bessel

- solution: active filters using amplifiers and feedback
- one discovers that a flat passband response and a fast roll-off are in competion, we must trade in one for the other
- in filter theory multipole filters are classified, according to the compromises they make, as: Chebyshev, Butterworth and Bessel
- it doesn't matter the particular circuit used to obtain the response: the name is associated to the response.

Anti-aliasing stage: Butterworth, Chebyshev, Bessel

- solution: active filters using amplifiers and feedback
- one discovers that a flat passband response and a fast roll-off are in competion, we must trade in one for the other
- in filter theory multipole filters are classified, according to the compromises they make, as: Chebyshev, Butterworth and Bessel
- it doesn't matter the particular circuit used to obtain the response: the name is associated to the response.
- frequency response for 6-poles active filters [Horowitz1989]

Anti-aliasing stage: f-response

- frequency response for 6-poles active filters

Anti-aliasing stage: f-response

- frequency response for 6-poles active filters

- Butterworth: maximally flat passband response

Anti-aliasing stage: f-response

- frequency response for 6-poles active filters

- Butterworth: maximally flat passband response
- Chebyshev: accept some passband ripple to get steeper roll-off

Anti-aliasing stage: t-response

- step response for 6-poles active filters

Anti-aliasing stage: t-response

- step response for 6-poles active filters
- Butterworth and Chebyshev: bad step-response (left) due to not constant delay (\equiv non linear phase resp.) (right)

Anti-aliasing stage: t-response

- step response for 6-poles active filters
- Butterworth and Chebyshev: bad step-response (left) due to not constant delay (\equiv non linear phase resp.) (right)

- Bessel: trades roll-off slope for step-response

Designing an anti-aliasing filter

To design a LPF:

- choose allowed range of gain in passband (ripple) ge of gain in

Designing an anti-aliasing filter

To design a LPF:

- choose allowed range of gain in passband (ripple)
- choose minimum frequency for which response leaves passband

Designing an anti-aliasing filter

To design a LPF:

- choose allowed range of gain in passband (ripple)
- choose minimum frequency for which response leaves passband
- choose maximum frequency for which it enter the stopband

Designing an anti-aliasing filter

To design a LPF:

- choose allowed range of gain in passband (ripple)
- choose minimum frequency for which response leaves passband
- choose maximum frequency for which it enter the stopband
- choose minimum attenuation in stopband

Designing an anti-aliasing filter

To design a LPF:

- choose allowed range of gain in passband (ripple)
- choose minimum frequency for which response leaves passband
- choose maximum frequency for which it enter the stopband
- choose minimum attenuation in stopband

Exercise: design an anti-aliasing filter!

DATA: ADC has $F_{s}=100 \mathrm{MHz}$, 12 bit; allow for 6% ripple in p-b and require at least 10^{-2} attenuation (-40 dB) at Nyquist frequency $\left(F_{s} / 2=50 \mathrm{MHz}\right)$

- 8-pole Cheb (6 \% ripple): -40 dB at $1.35 \times f_{c} \xlongequal{\text { requency dherrz) }} 1.35 \times f_{c}=50$ $\mathrm{MHz} \Longrightarrow f_{c}=37 \mathrm{MHz} \Longrightarrow$ choose 8-pole filter

Exercise: design an anti-aliasing filter!

DATA: ADC has $F_{s}=100 \mathrm{MHz}$, 12 bit; allow for 6% ripple in p-b and require at least 10^{-2} attenuation (-40 dB) at Nyquist frequency ($F_{s} / 2=50 \mathrm{MHz}$)

- 8-pole Cheb (6% ripple): -40 dB at $1.35 \times f_{c} \Longrightarrow 1.35 \times f_{c}=50$ $\mathrm{MHz} \Longrightarrow f_{c}=37 \mathrm{MHz} \Longrightarrow$ choose 8-pole filter
- 37 to $50 \mathrm{MHz}=$ wasted land. Question: a real 12 bit ADC has \approx 60 dB dynamic range... is 40 dB at $F_{s} / 2$ enough atten.?

Exercise: design an anti-aliasing filter!

DATA: ADC has $F_{s}=100 \mathrm{MHz}$, 12 bit; allow for 6% ripple in p-b and require at least 10^{-2} attenuation (-40 dB) at Nyquist frequency ($F_{s} / 2=50 \mathrm{MHz}$)

- 8-pole Cheb (6 \% ripple): -40 dB at $1.35 \times f_{c} \Longrightarrow 1.35 \times f_{c}=50$ $\mathrm{MHz} \Longrightarrow f_{c}=37 \mathrm{MHz} \Longrightarrow$ choose 8-pole filter
- 37 to $50 \mathrm{MHz}=$ wasted land. Question: a real 12 bit ADC has \approx 60 dB dynamic range... is 40 dB at $F_{s} / 2$ enough atten.?
- passband stops at $37 \mathrm{MHz} \Longrightarrow$ alias in passband for $f>50+(50-37)=100-37=63 \mathrm{MHz}\left(=1.7 f_{c}\right)$

Exercise: design an anti-aliasing filter!

DATA: ADC has $F_{s}=100 \mathrm{MHz}$, 12 bit; allow for 6% ripple in p-b and require at least 10^{-2} attenuation (-40 dB) at Nyquist frequency ($F_{s} / 2=50 \mathrm{MHz}$)

- 8-pole Cheb (6 \% ripple): -40 dB at $1.35 \times f_{c} \Longrightarrow 1.35 \times f_{c}=50$ $\mathrm{MHz} \Longrightarrow f_{c}=37 \mathrm{MHz} \Longrightarrow$ choose ${ }^{\circ}$-pole filter
- 37 to $50 \mathrm{MHz}=$ wasted land. Question: a real 12 bit ADC has \approx 60 dB dynamic range... is $40 \mathrm{~dB} /$ at $F_{s} / 2$ enough atten.?
- passband stops at $37 \mathrm{MHz} \Rightarrow$ alias in passband for
$f>50+(50-37)=100-37=63 \mathrm{MHz}\left(=1.7 f_{c}\right)$
- at $1.7 f_{c}$ attenuation is ≈ 0.001 (60 dB), compatible with effective 90 digynamic range

Sallen-Key circuit

How is the antialias implemented in electronics? Most used electronic scheme to get Bessel/Chebyshev/Butterworth response: Sallen-Key architecture. Same circuit gives all responses by suitable choice of ratios k_{1} and k_{2}

TABLE 3-1
Parameters for desigging Bessel, Buiterworth, and Chebyshev (6\% ripple) filters.

\# poles	Bessel		Butterworth		Chebyshev	
	k_{1}	E_{2}	k_{1}	k_{2}	k^{1}	k_{2}
2 stage 1	0.1251	0.268	0.1592	0.586	0.1293	0.842
+ stage stage	$\begin{aligned} & 0.11111 \\ & 0.0991 \end{aligned}$	$\begin{aligned} & 0.08+ \\ & 0.759 \end{aligned}$	$\begin{aligned} & 0.1592 \\ & 0.1992 \end{aligned}$	$\frac{0.152}{1.235}$	$\begin{aligned} & 0.2666 \\ & 0.1544 \end{aligned}$	$\begin{aligned} & 0.582 \\ & 1.660 \end{aligned}$
6 stage ! stage ? stage?	$\begin{aligned} & 0.0990 \\ & 0.0941 \\ & 0.0834 \end{aligned}$	0.040 0.364 1.023	0.1592 0.1592 0.1592	$\begin{aligned} & 0.068 \\ & 0.586 \\ & 1.483 \end{aligned}$	0.4019 0.2072 0.1574	0.537 1.448 1.846
8 stage 1 stage ? stage? stage 4	0.0894 0.0867 0.0814 0.0726	0.024 0.213 0.593 1.184	0.1592 0.1592 0.1592 0.1592	0.038 0.337 0.889 1.610	0.5359 0.2657 0.1858 0.1582	0.512 1.379 1.711 1.913

FIGURE 3-8
The modified Sallen-Key circuit, a building block for active filter design. The circuit shown implements a 2 pole low-pass filter. Higher order filters (more poles) can be formed by cascading stages. Find k_{1} and k_{2} from Table 3-1, arbitrarily select R_{1} and \bar{C} (try 10 K and $0.01 \mu \mathrm{~F}$), and then calculate R and R_{f} from the equations in the figure. The parameter, f_{c}, is the cutoff frequency of the filter, in hertz

Sallen-Key circuit

Many stages: increase complexity, noise, power dissipation...can we use just one?

Example of 1-stage 3-pole Bessel Sallen-Key as implemented in Luigi Bardelli's "year 2000" board

One usually studies actual response using circuit simulators (spice, pspice, Itspice...). In this case, we get $\approx 20 \mathrm{~dB}$ attenuation of aliased frequencies in passband...is it acceptable?
90 of 92

PSD: n / γ discrim. in liquid organic scintillators

- at fixed energy, protons stopping power \gg than electrons

PSD: n / γ discrim. in liquid organic scintillators

- at fixed energy, protons stopping power \gg than electrons
- higher density of triplet states along track \Longrightarrow signal has longer tail

PSD: n / γ discrim. in liquid organic scintillators

- at fixed energy, protons stopping power \gg than electrons
- higher density of triplet states along track \Longrightarrow signal has longer tail
- two integrations, usually slow (top left) and total (bottom left)

PSD: n / γ discrim. in liquid organic scintillators

- at fixed energy, protons stopping power \gg than electrons
- higher density of triplet states along track \Longrightarrow signal has longer tail
- two integrations, usually slow (top left) and total (bottom left)
- Right picture: "total (E) vs slow (GDM)". GDM normalized to pulse amplitude. Gammas (i.e. electrons) on the left, neutrons (i.e. 90 dpotons)_on the rioht

Bibliography

[Akkoyun12] Nucl. Instr. and Meth. in Phys. Res. A 668 (2012) 26-58
[Bardelli2002] L.Bardelli, et al., Nucl. Instr. and Meth. in Phys. Res. A 491 (2002) 244.
[Bardelli2004] L.Bardelli, et al., Nucl. Instr. and Meth. in Phys. Res. A 521 (2004) 480-492.
[Bardelli2005] L.Bardelli, "Development of sampling and digital signal processing techniques with applications to Nuclear Physics detectors", Ph.D. Thesis, University of Florence, 2005 (downloadable from http://www.infn.it/thesis/index.php).
[Bardelli2006] L.Bardelli and G.Poggi, Nucl. Instr. and Meth. in Phys. Res. A 560 (2006) 517-523;
L.Bardelli and G.Poggi, Nucl. Instr. and Meth. in Phys. Res. A 560 (2006) 524-538
[Bardelli2007] L.Bardelli et al., Nucl. Instr. and Meth. A 572 (2007) 882
[Carboni2012] S. Carboni, et al., et al. Nucl. Instr. and Meth. in Phys. Res. A 664 (2012) 251-263
[Goulding1972] F.S. Goulding, "Pulse-shaping in low-noise nuclear amplifiers: a physical approach to noise analysis", Nucl. Instr. Meth. 100 (1972) 493
[Hellesen2013] Hellesen et al, Nucl. Instr. and Meth. in Phys. Res. A 720(2013) 135
[Horowitz1989] Horowitz and Hill, "The Art of Electronics", Cambridge Univ. Press, 1989
[Hou1978] Hou and Andrews, "Cubic Splines for image Interpolation and Filtering"
IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-26, N 0.6 ,
DECEMBER 1978

Bibliography (cont.ed)

```
[Kester04] Analog Devices Data Conversion Handbook, W. Kester ed., 2004
[Keys1981] R.G.Keys, Cubic Convolution Interpolation for Digital Image Processing,
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-29, Dec. }198
[Knoll00] G.F.Knoll, Radiation Detection and Measurement 3rd ed., Wiley, }200
[Oppenheim10] A.V.Oppenheim, R.W.Schafer, Discrete-Time Signal Processing, Pearson, 2010
[Ottanelli2016] P.Ottanelli, Master Thesis, University of Florence, 2016
[Pastore2013] G.Pastore, Master Thesis, University of Florence, }201
[Smith97] Steven W. Smith, "The Scientist and Engineer's Guide to Digital Signal Processing", copyright
(c) 1997-1998 - (book's website: www.DSPguide.com)
[Spieler05] H.Spieler, Semiconductor Detector Systems, Oxford University Press, 2005
[Unser1993] M.Unser, "B-Spline Signal Processing: Part I-Theory",
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 2, FEBRUARY }199
M. Unser, "B-Spline Signal Processing: Part II-Efficient Design and Applications",
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 2, FEBRUARY }199
[Unser2000] M.Unser, Sampling-50 Years After Shannon, PROC. OF THE IEEE, VOL. 88,
NO. 4, APRIL }200
```

