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Università di Firenze
and INFN-Sezione di Firenze

25-26 October 2016

1 of 92



Second Lesson (2016-10-26)

48 of 92



Timing as a study case
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Remind from first lesson
• ADCs can add noise to your signal (∝ 2N−ENOB)

• Signal reconstruction can add artifacts and “noise” for fast
transients (≤ Kernel Lenght× Ts)
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Timing with LED

• Timing: extracting a “time mark” from a signal, e.g. with a
leading edge discriminator (LED);

• LED: device emitting a logic “true” signal when input voltage
crosses a fixed threshold (e.g. oscilloscope trigger)
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Figure 4: Leading edge discriminator
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LED and amplitude walk

In a LED, threshold crossing depends on amplitude for a fixed
risetime. Reason: threshold is fixed.
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Figure 5: Amplitude walk of a LED.
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Constant Fraction Discrimination

• a Constant Fraction Discriminator acts as if its threshold could
move dynamically: threshold is a fixed fraction f of full amplitude;
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Figure 6: Constant Fraction Discriminator principle.

• amplitude walk reduced (eliminated exactly for a linear rising edge)
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CFD and PSD
CFD useful also in Pulse Shape Discrimination: NE-213 anode
current signal integrated on RC parallel =⇒ the slower component of
a proton signal (i.e. neutron detected) is associated to a longer
risetime with respect to electron signal (i.e. gamma detected)

(t90% − t10%)p > (t90% − t10%)e

Figure 7: PSD from risetime (adapted from [Roush1964]).
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Timing and noise: jitter

noise fluctuations affect signal =⇒ time mark fluctuates around
average

=⇒ jitter : statistical time-mark fluctuations
55 of 92



Jitter: a simple model

Figure 8: Noise and jitter (adapted from [Spieler2005])

• σn std. dev. amplitude fluctuations → “noise band” 2σn wide

• project σn on time axis: σt =
σn

[|dS/dt|tx ]
where S(tx ) = VT

• we put threshold where |dS/dt| is max =⇒ σt minimum

• linear signal front:

∣∣∣∣dSdt
∣∣∣∣ =

A

trise
=⇒

σt =
σntrise

A
∝ trise

SNR
(3)
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A digital-CFD (dCFD)
CFD procedure for a “tail” signal (e.g. from charge preamp):
1) apply pole-zero cancellation + integration
to get rid of tail

Please note:

1. the time axis unit is ns;
2. original (not interpolated) signal has Ts = 10 ns.
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A digital-CFD (dCFD)

CFD procedure for a “tail” signal (e.g. from charge preamp):
2) calculate the baseline BL (e.g. averaging flat part: also consider
noise autocorrelation, e.g. when calculating rise-time)
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A digital-CFD (dCFD)

CFD procedure for a “tail” signal (e.g. from charge preamp):
3) calculate max amplitude A (samples average or amplitude of
unit gain shaper); step amplitude = A−BL
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A digital-CFD (dCFD)

CFD procedure for a “tail” signal (e.g. from charge preamp):
4) calculate dynamic threshold as
T = BL + f (A−BL)
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A digital-CFD (dCFD)

CFD procedure for a “tail” signal (e.g. from charge preamp):
5) apply interpolation (whole signal shown...
in real-life region around threshold is enough)
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A digital-CFD (dCFD)
CFD procedure for a “tail” signal (e.g. from charge preamp):
6) time mark = intersection interpolation-threshold
(find it iteratively in complex cases)

Intersection time tX is in units of Ts (fraction of the sampling period).
Time in seconds from first sample = tX · Ts . If x [n] last sample
before tX then 0 < tx −n < 1 (in this example, n = 23 tX ∼ 23.68).57 of 92



t-measurement: Sampling ADC vs Analog

Effects affecting resolution of digital timing:

• the sampling ADC adds noise to that already present in our system
=⇒ this will tend to increase our jitter

• digitizing systems usually employ some kind of low-pass filter
(antialias filter) before the ADC =⇒ also rise-time will be affected
(i.e. slowed down) =⇒ jitter fluctuations increase

• on the other hand, low pass antialias filter will attenuate high
frequency noise =⇒ jitter reduction

• detector signals have wide frequency bandwidth (wideband signals)
=⇒ signal reconstruction from samples affected by interpolation
errors =⇒ timing affected by interpolation “noise” (an effect not
present in analog chains)
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Jitter in a dCFD

• we get jitter as in analog LED or CFD [Bardelli2004];

• assume signal perfectly reconstructed (e.g. original signal linear
around threshold =⇒ linear interpolation perfect!), then

σt ≤
σe+q∣∣dS
dt

∣∣
tx

σ2
e+q = σ2

e +
1

12 · 4ENOB

(4)

• we are using units R = 1 (R: full range of the ADC)

• NB: analog CFD similar formula except: equal sign, no ADC noise,
a factor

√
1 + f 2
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dCFD simulation: asynchronous sampling

• asynchronous sampling + interpolation =⇒ time mark fluctuation!

• effect of interpolation in a simple case: linear interpolation
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• non linear front =⇒ reconstruction not perfect

• for a fixed signal shape, tx depends on where samples are taken

• i.e. on phase of sampling clock w/ respect to signal front

• will happen anyway w/ other kernels (not BW limited signal)
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Questions about interpolation “noise”

• effect of interpolation different for linear and cubic;
• we know there are many kernels available...
• which kernel is the “best” one?
• for a given Ts what is the minimum risetime safe from

interpolation noise?
• from the previous lesson:
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dCFD simulation: basic principle

• simulate signals having different risetimes (jitter is expected to
increase with risetime);

• signal are sampled asynchronously with respect to the signal itself
(i.e. for each event the sampling comb is translated rigidly, keeping
the Ts separation between samples);

• sampling comb shift extracted from uniform distribution in
(−Ts/2, Ts/2);

• same procedure employed for simulation of interpolation noise;
• random noise added to each signal (noise standard deviation

constant for all signals);
• noise variance and spectrum depends on two contributions: the

simulated front-end electronics bandwidth (σe in eq. (4)) and the
simulated ADC noise, derived from ENOB (σq = 1√

12·2ENOB
in

eq. (4)).
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dCFD simulation: 12 bit, 10.8 ENOB, 100 MHz ADC

• FWHM of tx spectrum vs signal risetime [Bardelli2004]:
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• cubic interpolation much better than linear: min{FWHM}=100 ps!
• t = 0 known =⇒ fluctuations due to tx determination only
• trise > 60 ns =⇒ FWHM ∝ tr (SNR constant!) (cfr. eq. (3));
• FWHM increases rapidly as risetime decreases under 60 ns.
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Interpolation artifacts: double coincidence peak

• When interpolation dominates resolution strange artifacts appear;
• Example: experimental data (time coincidence between two Si

detectors exposed to diffused UV pulsed laser) [Pastore2013]:

• rise-time less than 4Ts ; cubic interp. (4 consecutive samples)
• coincidence peak not gaussian; left peak: signals for which first

(out of 4) interpolation node (sample) lies on baseline; right peak:
signals for which first node already above baseline.64 of 92



Questions about ADC’s

• fast signals (characteristic times ≤ 3÷ 4Ts): interpolation affects
FWHM;

• the faster the ADC the better? buy the ADCs with highest Fs?

• remember ENOB? lower ENOB =⇒ more time jitter;

• in real ADCS, high ENOB and high Fs are conflicting requirements.
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Timing measurement: simulation of different ADC’s
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Figure 9: Time resolution (FWHM) for different ENOB/Fs combinations vs
charge preamp risetime [Bardelli2004]. Cubic interpolation used.

high sampling rate and high ENOB: conflicting requirements
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Timing measurement: simulation of different ADC’s
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Figure 9: Time resolution (FWHM) for different ENOB/Fs combinations vs
charge preamp risetime [Bardelli2004]. Cubic interpolation used.

we use the analog CFD curve (curve e), in blue) as reference
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Figure 9: Time resolution (FWHM) for different ENOB/Fs combinations vs
charge preamp risetime [Bardelli2004]. Cubic interpolation used.

risetime >60ns: ENOB= 12 (a, d, f) ≈ analog CFD at 400 and 100
MS/s
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Timing measurement: simulation of different ADC’s
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Figure 9: Time resolution (FWHM) for different ENOB/Fs combinations vs
charge preamp risetime [Bardelli2004]. Cubic interpolation used.

ENOB= 8 at 1 GS/s too noisy! far from analog (except for rise-time
∼ 2÷ 3 ns); worse than 12 ENOB at 100 MS/s for rise-time > 30 ns.
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Timing measurement: simulation of different ADC’s
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Figure 9: Time resolution (FWHM) for different ENOB/Fs combinations vs
charge preamp risetime [Bardelli2004]. Cubic interpolation used.

risetime ≈ 60 ns: even ENOB=10.8 100 MS/s comes close to analog
ENOB= 12, Ts = 10 ns =⇒ min{FWHM}= 100÷ 200 ps!
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Figure 9: Time resolution (FWHM) for different ENOB/Fs combinations vs
charge preamp risetime [Bardelli2004]. Cubic interpolation used.

risetime <60 ns: at 100 MS/s interpolation dominates! =⇒
Fs = 100 MS/s not enough
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Figure 9: Time resolution (FWHM) for different ENOB/Fs combinations vs
charge preamp risetime [Bardelli2004]. Cubic interpolation used.

N.B. (ENOB= 12 Fs = 400 MS/s) better than (ENOB= 8
Fs = 1÷ 2 GHz) down to risetime = 7 ns!
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Final message
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enough samples on front (about 4÷5)
=⇒ better high ENOB than high Fs
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Time resolution and PSD in Si detectors
• FAZIA (Four π A Z Identification Array) collaboration;
• charge (Z) id of nuclei stopped in 300 µm thick Si;

Figure 10: “Si-Energy vs Charge rise-time” (from [Carboni2012]).

• elements from Z=2 to Z=54 are resolved;
• risetimes from 20 to 220 ns =⇒ Z id possible thanks to ≈100 ps

resolution. (ADC is 14 bit, 100 MS/s, digitizer ENOB=11.2);
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Moving average, a simple Low Pass filter

Causal mov. average of M samples from x [n −M + 1] to x [n]
Convolution: y [n] = 1

M

∑M−1
i=0 x [n − i ]

Also recursion works: y [n] = y [n − 1] + 1
M (x [n]− x [n −M])

Frequency response: Low Pass Filter
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Moving average, a simple Low Pass filter

Effect of moving average on a detector pulse. The processed signal is
in red. Transients are slowed down (low-pass!).
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Moving average, a simple Low Pass filter

The same picture expanded to show how the noise on the baseline is
reduced by the moving average.
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Application to n/γ PSD
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n/γ PSD: introduction
• liquid organic scintill. (e.g. BC501), cyclic aromatic compounds

• scintillation emitted by excited molecules featuring π level structure
• emission involving only singlet states =⇒ shorter emission time
• emission through triplet states =⇒ longer emission time
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n/γ PSD: introduction
• density of triplet states along particle track affects overall emission

time
• remind: γ must transfer energy to an electron, neutron to a proton
• density of triplet states greater where greater specific energy loss:

• take 1 MeV kinetic energy: then (βγ)electron = 2.8 and
(βγ)proton = 4.5 10−2

• much higher density for p =⇒ longer emission time (“tail” in
signal).
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PSD with charge comparison 1
• two integrations, usually slow (a.k.a. tail) and total

Figure 11: Slow and total integral (adapted from [Söderstrom2008]).

• sometimes fast (a.k.a. early) and total
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PSD with charge comparison 2

• most used PSD method (see ref. table at the end);

• baseline statistical uncertainty: keep it below other causes of
uncertainty (use enough samples for average), see [Bardelli2006].

• interpolation: from what we have learnt, we can exploit it:

1. to determine the time mark reference for integral start (either with a
LED or CFD algorithm or using interpolation to find “real” maximum);

2. to evaluate integrals starting/ending “in between samples” (most
often previous point will take you in between);

• really consider 2) if ∆t ≈ Ts (∆t � Ts : it is OK to just sum
samples);
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PSD with charge comparison 3

• antialiasing filter could slow down first part =⇒ increase ∆t of fast
with respect to analog FEE (part of fig.1 in [Bardelli2002]);
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PSD with charge comparison 4

• to minimize ADC noise fluctuations, fast (shorter) could be better
than slow (longer). If s[i ] is signal and n[i ] is noise

V

{
M∑

i=1

(s[i ] + n[i ])

}
= V

{
M∑

i=1

s[i ]

}
+ V

{
M∑

i=1

n[i ]

}
=

= V

{
M∑

i=1

s[i ]

}
+ M V {n[i ]}

where V {·} is variance operator and we assume same noise
variance on all samples =⇒ noise contribution ∝ M;
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PSD with charge comparison 4

• more complex weigthing function w(t) than “rectangular gated”
integral can be used [Gatti1962, Söderstrom2008]

• the optimal is very close to rectangular anyway:

Figure 12: Optimal weigthing function (solid) and rectangular slow
integral (dashed). An average neutron signal shape is also shown, from
[Söderstrom2008].
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PSD: zero crossing and risetime

Figure 13: Zero crossing and risetime methods, from [Södestrom2008].

• zero-crossing signal obtained differentiating charge signal (e.g.
bipolar DL shaping, usually need also low-pass: mov. average);

• zc-time: time from signal start to zero crossing of bipolar;
• risetime: time for amplitude to go from, e.g., 10% to 90% of

maximum;
• strictly related: zc-time ↔ time of zero derivative ↔ time of max;
• most used, together with charge comparison;
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• zero-crossing signal obtained differentiating charge signal (e.g.
bipolar DL shaping, usually need also low-pass: mov. average);

• zc-time: time from signal start to zero crossing of bipolar;
• risetime: time for amplitude to go from, e.g., 10% to 90% of

maximum;

• strictly related: zc-time ↔ time of zero derivative ↔ time of max;
• most used, together with charge comparison;

78 of 92



PSD: zero crossing and risetime

Figure 13: Zero crossing and risetime methods, from [Södestrom2008].
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PSD: Time over Threshold and Q-Risetime
• relevance of interpolation for precise time mark evaluation (both
t = 0 mark and zero crossing);

• risetime: digital integration+interpolation based dCFD algorithm;

• risetime equivalent: “time over threshold”;

Basic principle of Time over Threshold
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PSD: Time over Threshold and Q-Risetime
• relevance of interpolation for precise time mark evaluation (both
t = 0 mark and zero crossing);

• risetime: digital integration+interpolation based dCFD algorithm;

• risetime equivalent: “time over threshold”;

BC501 sampled with 12 bit, 250 MSPS, 10.5 ENOB,
Am-Be source, Time Over Threshold

Cubic interpolation: moving average helps getting better separation.
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PSD: Time over Threshold and Q-Risetime
• relevance of interpolation for precise time mark evaluation (both
t = 0 mark and zero crossing);

• risetime: digital integration+interpolation based dCFD algorithm;
• risetime equivalent: “time over threshold”;

BC501 12 bit etc., Am-Be source, Charge Risetime

Cubic dCFD at 20 and 80% to get trise of integrated PMT signal.
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PSD with reference shapes (a.k.a. NGMA)
• exploits “reference” shapes;

• compares digitized signal to reference,
a “similarity” parameter is extracted
(e.g.

∑
i (S [i ] − Sref [i ])2, etc.);

• “most similar” type is assigned;

• reference shapes: averages over
thousands of digitized signals

• asynchronous sampling clock =⇒
carefully align shapes before averaging

• interpolation can help:

1. evaluating real start of the signal
(dCFD);

2. calculating samples “in between” =⇒
“oversampled” shapes can be aligned
with better precision;

Figure 14: Reference signal
shapes, from [Guerrero2008].
Note the energy dependence.
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PSD: current maximum

Maximum of current signal (at a given energy) depends on signal
duration. In [Cavallaro2013] it is implemented with analog electronics.
Digital signals: interpolation critical to get real maximum!
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PSD w/ BC501: Current Maximum

BC501 12 bit 250 MSPS, Am-Be source

Comparing left to right: beneficial effect of interpolation (Imax).
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PSD w/ BC501: Current Maximum

BC501 12 bit 250 MSPS, Am-Be source

Comparing left to right: beneficial effect of moving average w/ interp.
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PSD w/ BC501: Current Maximum

Comparing left to right: with mov. ave. you get “almost” there...
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PSD: Pulse Gradient Analysis [D’Mellow2007]

Figure 15: Principle of PGA according to [D’Mellow2007] (picture taken
from [Söderstrom2008]).

• normalized shape; PSD param.=amplitude at ∆t after max;
• interpolation: both peak determination and amplitude after ∆t;
• “smoothing” needed to reduce noise/fluctuations (method relies

on a single amplitude, there is no intrinsic averaging).
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Selected n-γ PSD literature (1)

Scint. Analog Digital ADC Ref.

Adams1978 NE213 CC NIM 156(1978)459
Alexander1961 NE213, UGLLT ZC NIM 13(1961)244
Ambers2011 EJ-309 CC+NGMA 12bit/250MHz NIM A638(2011)116
Barnabà1998 BC501A ZC NIM A410(1998)220
Bell1981 NE213 CC NIM 188(1981)105

Cao1988 NE213 ZC NIM A416(1988)32
Cavallaro2013 NE213 IMAX NIM A700(2013)65

Ĉerny2004 BC501 CC NIM A527(2004)512
Cester2013 EJ-309 CC 10bit/1GHz NIM A719(2013)81
Cester2014 EJ-299-33 CC 12bit/250MHz NIM A735(2014)202
D’Mellow2007 EJ301 CC, PGA 10bit/250MHz NIM A578(2007)191
Esposito2004 stil, NE213 CC 12bit/200MHz NIM A518(2004)626
Flaska2007 BC-501A CC 8bit/5GHz NIM A577(2007)654
Flaska2009 BC-253A CC 12bit/250MHz NIM A599(2009)221
Flaska2013 EJ-309 CC 10÷14bit/0.25÷2GHz NIM A729(2013)456
Gamage2011 BC501A PGA,CC,NGMA,SD 12bit/500MHz NIM A642(2011)78
Guerrero2008 BC501A NGMA 8bit/1GHz NIM A597(2008)212
Hawkes2013 cust. plast. shape study 8bit/2.5GHz NIM A729(2013)522
Hellesen2013 BC400, NE213 CC 12bit/2GHz NIM A720(2013)135
Heltsley1988 NE213 CC NIM A263(1988)441
Kaplan2013 EJ309 CC 12bit/250MHz NIM A729(2013)463
Kaschuck2005 ant,stil,NE213 CC 12bit/200MHz NIM A551(2005)420
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Selected n-γ PSD literature (2)

Scint. Analog Digital ADC Ref.

Kalyna1970 NE213 ZC NIM 88(1970)277
Jastaniah2002 BC523A RT,ToT 8bit/500MHz NIM A517(2004)202
Jhingan2008 BC501 CC NIM A585(2008)165
Pai1989 NE213 ZC NIM A278(1989)749
Pawelzak2013 EJ309 CC 12bit/200MHz NIM A711(2013)21
Savran2010 BC501A CC, NGMA 12bit/500MHz NIM A624(2010)675
Söderstrom2008 BC501 ZC WCC, ZC, CC 14bit/100MHz NIM A594(2008)79
Wolski1995 BC501A ZC, CC NIM A360(1995)584
Nakhostin2010 NE213 ZC 8bit/1GHz NIM A621(2010)498
Roush1964 NE213 ZC NIM 31(1964)112
Söderstrom2008 BC501 ZC ZC, CC 14bit/100MHz NIM A594(2008)79
Stevanato2012 LaBr(Ce) CC CC 12bit/250MHz NIM A678(2012)83
Yousefi2009 phoswich for β/γ disc. wavelets 12bit/100MHz NIM A599(2009)66
Zaitseva2012 cust. plast. CC 14bit/200MHz NIM A668(2012)88

CC=charge comparison
WCC=weigthed charge comparison (see Gatti1962)
ZC=zero crossing
ToT=Time over threshold
NGMA=neutron gamma model analysis (a.k.a true shape)
PGA=pulse gradient analysis
SD=simplified digital charge collection
RT=rise time
IMAX=maximum of current (anode) signal
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Summary
• Many advantages: digitizers are going to stay with us;

• Already used on large scale (e.g. γ’s: AGATA, GRETINA; HCP:
FAZIA, GARFIELD...many more planned/developed)

• Two important things to keep in mind:

◦ Sampling ADCs can add noise to your signal (ENOB)
◦ Issues related to signal reconstruction (artifacts, interpolation noise,

etc.) (Fs)

• Be aware when you are time averaging (e.g. energy estimation)
and when instead your info is localized in time and more prone to
noise (e.g. timing, some PSD algorithms).

• we can learn from > years experience in imaging and
telecommunication (cubic convolution, splines, smoothing splines,
wavelets,...)... literature is rich on this topic (some papers in the
references of these lessons).

• Sometimes better use your human/technical resources (if
available!) to design your own digitizer

86 of 92



Summary
• Many advantages: digitizers are going to stay with us;
• Already used on large scale (e.g. γ’s: AGATA, GRETINA; HCP:

FAZIA, GARFIELD...many more planned/developed)

• Two important things to keep in mind:

◦ Sampling ADCs can add noise to your signal (ENOB)
◦ Issues related to signal reconstruction (artifacts, interpolation noise,

etc.) (Fs)

• Be aware when you are time averaging (e.g. energy estimation)
and when instead your info is localized in time and more prone to
noise (e.g. timing, some PSD algorithms).

• we can learn from > years experience in imaging and
telecommunication (cubic convolution, splines, smoothing splines,
wavelets,...)... literature is rich on this topic (some papers in the
references of these lessons).

• Sometimes better use your human/technical resources (if
available!) to design your own digitizer

86 of 92



Summary
• Many advantages: digitizers are going to stay with us;
• Already used on large scale (e.g. γ’s: AGATA, GRETINA; HCP:

FAZIA, GARFIELD...many more planned/developed)
• Two important things to keep in mind:

◦ Sampling ADCs can add noise to your signal (ENOB)
◦ Issues related to signal reconstruction (artifacts, interpolation noise,

etc.) (Fs)

• Be aware when you are time averaging (e.g. energy estimation)
and when instead your info is localized in time and more prone to
noise (e.g. timing, some PSD algorithms).

• we can learn from > years experience in imaging and
telecommunication (cubic convolution, splines, smoothing splines,
wavelets,...)... literature is rich on this topic (some papers in the
references of these lessons).

• Sometimes better use your human/technical resources (if
available!) to design your own digitizer

86 of 92



Summary
• Many advantages: digitizers are going to stay with us;
• Already used on large scale (e.g. γ’s: AGATA, GRETINA; HCP:

FAZIA, GARFIELD...many more planned/developed)
• Two important things to keep in mind:
◦ Sampling ADCs can add noise to your signal (ENOB)

◦ Issues related to signal reconstruction (artifacts, interpolation noise,
etc.) (Fs)

• Be aware when you are time averaging (e.g. energy estimation)
and when instead your info is localized in time and more prone to
noise (e.g. timing, some PSD algorithms).

• we can learn from > years experience in imaging and
telecommunication (cubic convolution, splines, smoothing splines,
wavelets,...)... literature is rich on this topic (some papers in the
references of these lessons).

• Sometimes better use your human/technical resources (if
available!) to design your own digitizer

86 of 92



Summary
• Many advantages: digitizers are going to stay with us;
• Already used on large scale (e.g. γ’s: AGATA, GRETINA; HCP:

FAZIA, GARFIELD...many more planned/developed)
• Two important things to keep in mind:
◦ Sampling ADCs can add noise to your signal (ENOB)
◦ Issues related to signal reconstruction (artifacts, interpolation noise,

etc.) (Fs)

• Be aware when you are time averaging (e.g. energy estimation)
and when instead your info is localized in time and more prone to
noise (e.g. timing, some PSD algorithms).

• we can learn from > years experience in imaging and
telecommunication (cubic convolution, splines, smoothing splines,
wavelets,...)... literature is rich on this topic (some papers in the
references of these lessons).

• Sometimes better use your human/technical resources (if
available!) to design your own digitizer

86 of 92



Summary
• Many advantages: digitizers are going to stay with us;
• Already used on large scale (e.g. γ’s: AGATA, GRETINA; HCP:

FAZIA, GARFIELD...many more planned/developed)
• Two important things to keep in mind:
◦ Sampling ADCs can add noise to your signal (ENOB)
◦ Issues related to signal reconstruction (artifacts, interpolation noise,

etc.) (Fs)

• Be aware when you are time averaging (e.g. energy estimation)
and when instead your info is localized in time and more prone to
noise (e.g. timing, some PSD algorithms).

• we can learn from > years experience in imaging and
telecommunication (cubic convolution, splines, smoothing splines,
wavelets,...)... literature is rich on this topic (some papers in the
references of these lessons).

• Sometimes better use your human/technical resources (if
available!) to design your own digitizer

86 of 92



Summary
• Many advantages: digitizers are going to stay with us;
• Already used on large scale (e.g. γ’s: AGATA, GRETINA; HCP:

FAZIA, GARFIELD...many more planned/developed)
• Two important things to keep in mind:
◦ Sampling ADCs can add noise to your signal (ENOB)
◦ Issues related to signal reconstruction (artifacts, interpolation noise,

etc.) (Fs)

• Be aware when you are time averaging (e.g. energy estimation)
and when instead your info is localized in time and more prone to
noise (e.g. timing, some PSD algorithms).

• we can learn from > years experience in imaging and
telecommunication (cubic convolution, splines, smoothing splines,
wavelets,...)... literature is rich on this topic (some papers in the
references of these lessons).

• Sometimes better use your human/technical resources (if
available!) to design your own digitizer

86 of 92



Summary
• Many advantages: digitizers are going to stay with us;
• Already used on large scale (e.g. γ’s: AGATA, GRETINA; HCP:

FAZIA, GARFIELD...many more planned/developed)
• Two important things to keep in mind:
◦ Sampling ADCs can add noise to your signal (ENOB)
◦ Issues related to signal reconstruction (artifacts, interpolation noise,

etc.) (Fs)

• Be aware when you are time averaging (e.g. energy estimation)
and when instead your info is localized in time and more prone to
noise (e.g. timing, some PSD algorithms).

• we can learn from > years experience in imaging and
telecommunication (cubic convolution, splines, smoothing splines,
wavelets,...)... literature is rich on this topic (some papers in the
references of these lessons).

• Sometimes better use your human/technical resources (if
available!) to design your own digitizer

86 of 92



GARFIELD+RCo at LNL: digitizers [Pasquali2007]

• 1 channel/board

• 12 bit; 125 MSPS

• 9.5 ENOB

• sel. polarity
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GARFIELD+RCo at LNL: new digitizers (start 2011)

• 2 channel/board

• 14 bit; 125 MSPS

• 11.5 ENOB

• adj. DC offset
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New digitizer

• design: Stefano Meneghini (INFN-Bo), Luigi Bardelli, Maurizio
Bini, G.P.

• 14 bit; 125 MSPS;

• two coarse dynamic ranges (better SNR)+ fine gain (12 bit DAC);
adjustable range from 100 mV to 10 V

• DC coupled

• adjustable DC offset (polarity selection)

• two channels per board (sampling clocks have opposite phase)

• FPGA centric

• cost: about 300 euros/channel

• DSP: ADSP2189N; FPGA: Altera Cyclone III; Clock gen: AD9572

• VCA: AD8337; ADC: AD9255
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Thank you!
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Backup slides
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Quantization noise: a picture
• comes from second step of A/D conversion (quantization)

• subtract quantized and not-yet-quantized signals:

• the difference is usually correlated to the input for simple signals,
e.g. sine (cfr. exercise with pClasses test quant noise() in test.C)
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Quantization noise: some math

• N-bit ADC =⇒ 2N possible values (0 ÷ 2N − 1);

• quantized values 6= “exact values”: e(t) = xc (t) − Q{xc (t)} 6= 0
• e(t) (quantization error, neglecting sampling) varies with time;

• mean square value of e: e2(t) =
s

q

∫ +q/2s
−q/2s (st)2 dt =

q2

12
• q = R/2N; R=range in Volt (take R = 2N to get the equivalent in

bits);

• rms value
q√
12

same as uniform distribution in (−q/2, q/2)
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Quantization noise: frequency spectrum

• quantized levels “close enough” + complex signal (e.g. speech)
=⇒ difference fluctuates randomly from sample to sample
[Oppenheim10];

• also true for simple signals + wide BW noise (detector pulse!);

• a (almost always) good approximation: constant frequency
spectrum (white spectral density) in (0, Fs

2 )

• our quant. noise model: “white” noise of variance

σ2
Q =

1

12

(
R

2N

)2

• =⇒ “white” noise of spectral density w = 2
σ2

Q

Fs
=

1

6Fs

(
R

2N

)2

in

(0, Fs
2 )
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Ideal ADC: Signal-to-Noise Ratio (SNR)
• SNR: ratio of rms signal amplitude to rms noise amplitude

• Consider a sine wave with Vpp = FS :

SNR =
v2

sine

v2
q

=
FS

2
√

2

√
12

q
=

√
3

2

FS

q

• useful to calculate SNR in dB:

SNR(dB) = 20 log10

(
FS

q

)
+ 20 log10

(√
3

2

)
=

= 20 log10(2N) + 1.76 = 6.02N + 1.76

• Some values:
N (bits) SNR (dB)

10 61.96
12 74.00
14 86.04

as a rule of thumb: 6 dB per bit!
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Real ADC and noise...

• we know that a real ADC can be modelled as an “ideal” ADC plus
a noise generator adding noise to the input (see figure);

ADC

IDEAL
N bits

input

REAL ADC

noise

+

• now we can include quantization noise into the generator and
assume no need for quantization in the “ideal” ADC;

• real ADC noise has variance σ2
eff > σ2

Q
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Actual Noise: SINAD

• to express the actual amount of added noise manufacturers quote
SINAD (signal-to-noise-and-distortion) or ENOB
(effective-number-of-bits)

• SINAD: take Fourier Transform of sampled sine wave (Vpp ≈FS).

• signal power: from spectrum peak at signal frequency.

• noise-and-distortion: integral of all other components (harmonics,
broadband noise)

• SINAD takes into account the dynamic (AC) performance
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Actual Noise: ENOB

• textbook definition of ENOB: start from ideal SNR

SNR(dB) = 20 log10(2N) + 1.76 = 6.02N + 1.76

it’s useful to invert it: we get a definition of N

N =
SNR − 1.76

6.02

substituting the actual SNR (SINAD) to ideal we obtain
“effective” number of bits (ENOB)

ENOB ≡ SINAD − 1.76

6.02

• ENOB: realistic estimate of ADC resolution, ENOB < N
• two ADC’s with same ENOB and different N give similar

performances
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Actual noise: ENOB in nuclear physics

• my definition of ENOB:

ENOB is the number you need instead of N in σ2
Q =

1

12

(
R

2N

)2

to get σ2
eff , i.e. σ2

eff =
1

12

(
R

2ENOB

)2

ENOB = log2

(
R√

12σeff

)
• the two defs are equivalent if σeff is dominant contribution to SINAD (usually the case in nuclear physics).

• properties of ENOB:

1. doubling σeff we loose 1 bit (1 unit in ENOB);

2. σeff ∝
R

2ENOB

3. in bits (R = 2N) we get σeff ∝ 2N−ENOB =⇒ N− ENOB controls
how much noise we get;
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ENOB: equivalence of the two definitions

σ2
eff =

1

12

(
R

2ENOB

)2

=⇒ ENOB = 1
2 log2

(
R2

12σ2
eff

)
(*)

Sine wave, amplitude R =⇒ Vrms =
R

2
√

2

If σeff only contribution to SNR: SNR =
Vrms

σeff
=

R

2
√

2σeff

.

Invert and obtain:
R2

σ2
eff

= (2
√

2SNR)2 and substitute in (*) to find

ENOB = 1
2 log2

(2
√

2 SNR)2

12 = log2 SNR − log2

√
12

2
√

2
= log2 SNR − log2

√
3
2

1. multiply and divide by log10 2 = 0.301, then use log rules to
change log base to 10;

2. multiply and divide by 20, so that 20 log10SNR = SNR(db).

ENOB = SNR(dB)−20log10

√
1.5

20 log102 = SNR(dB)−1.76
6.02 Q.E.D.
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Shannon: Ideal continuous-discrete time converter

• Ideal C/D converter: xc (t) =⇒ x [n] = xc (n Ts) (no quantization)

• let’s divide C/D conversion into two steps [Oppenheim10]:

1. modulation by an impulse train s(t) =
∑+∞

n=−∞ δ(t − nTs) =⇒
xs(t) = xc (t) s(t) =

∑+∞
n=−∞ xc (nTs)δ(t − nTs)

2. conversion of xs(t) into x [n] (x [n]=area of n-th pulse).
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Shannon: signal reconstruction
• xs(t) is defined also for t 6= nTs (though it is = 0).

• Trick: move to frequency domain (Ωs = 2π/Ts) where we
calculate the Fourier Transform (FT ) of our comb s(t):

S(jΩ) = FT {s(t)} =
2π

Ts

+∞∑
k=−∞

δ(Ω− kΩs)

• well known property of FT : product in t-domain (f-domain) it’s
equivalent to convolution in f-domain (t-domain):
Xs(jΩ) = FT {xs(t)} = 1

2πXc(jΩ) ∗ S(jΩ) =
1

Ts

∑+∞
k=−∞ Xc (Ω− kΩs)

• the FT {xs(t)} is made of f-shifted images of FT {xc (t)}
(exploiting linearity of convolution and exploiting the result
Xc(jΩ) ∗ δ(Ω− kΩs) = Xc(Ω− kΩs))
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Shannon: periodic frequency spectrum
Xs (jΩ) =

1

Ts

+∞∑
k=−∞

Xc (Ω − kΩs )

original Xc (jΩ) plus ∞ copies
shifted by kΩs

• To re-construct the original
FT : use frequency-selective
filter keeping the original and
discarding the copies

• use inverse FT to obtain xc(t)

• copies must NOT overlap =⇒ if
ΩN is maximum frequency in
xc(t) then we want

Ωs −ΩN ≥ ΩN =⇒ Ωs ≥ 2ΩN
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Shannon: filtering out images in f-domain

• t-domain reconstruction of limited bandwidth (BW< FN) signal
x(t) – sampled at Fs > 2FN – from samples x [n] = x(nTs):

• First: construct a pseudo-continuous function
xs(t) =

∑
n x [n]δ(t − nTs) (pulse train)

• we know FT of xs(t) is made of shifted copies of some Xr (jΩ),
centered at n Fs with Fs = 1/Ts

• first, filter out the extra images in f-domain (those with n 6= 0)
multiplying × brick-wall filter response (cut at fmax )

• multiplication in f-domain =⇒ convolution with filter’s impulse
response (right picture) in t-domain (N.B: Ts = 1 in right panel)
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Sinc interpolation

• in t-domain, convolution of xs(t) with FT −1 of brick-wall

f-response: sinc(t) = sin(πt/Ts )
πt/Ts

(normalized sinc). We assumed a

cut-off at fmax =
1

2

1

Ts

xr (t) = xs(t) ∗ sinc(t) =
∑

n

x [n]

∫ +∞

−∞
sinc(x)δ(t − nTs − x)dx =

=
∑

n

x [n]sinc (t − nTs)

• interpolation: for t = mTs , sinc (mTs − nTs) = 0 ∀m ∈ Z except
m = n where sinc(0) = 1 =⇒ x(nTs) = x [n] =⇒ xr (t) goes
through known samples; in between we get “interpolated” values
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Anti-aliasing stage: general remarks

• antialiasing filter: crucial pre-ADC element! Usually Low-Pass filter
(Shannon Theorem!)

• REMEMBER: ADC receives the output of the antialias, NOT the
input of the digitizer (i.e. the original signal)!

• role: to attenuate frequencies beyond Fs/2 which would alias into
(0, Fs/2)

• =⇒ changes signal shape in t-domain (and of course its frequency
content)

• the ideal antialias has a “brick wall” response cutting at fc = Fs/2

Vin Vout

Frequency

Vout/Vin

1

0 fc
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Anti-aliasing stage: general remarks

• a perfect brick wall response not possible in analog circuit...

• ...actual filters have pass-band ripples, transition band not infinitely
narrow (roll-off slope is finite), finite attenuation in stop-band...

Frequency

Vout /Vin

passband

stopband

transition
band

roll-off

◦ passband: f-interval where frequencies are unaltered

◦ stopband: f-interval where frequencies are blocked

◦ transition band: between pass and stop bands (starts
at the cutoff frequency)

◦ a fast roll-off is desired to separate frequencies (this
usually completely spoils t-domain response! you can’t
have it all)

◦ constant passband gain desired (no passband ripple)

• N.B. attenuation usually not constant in stopband: stopband
begins when a certain minimum attenuation is reached
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Filter impulse, step and frequency response

• filter has: impulse, step and frequency response

• impulse response: filter output when input is a pulse (Dirac’s δ)

• step response: filter output when input is a perfect step

• each one contains complete info about the filter

• frequency response ⇐⇒ filter action on f-domain info

• step response ⇐⇒ filter action on t-domain info

• time domain coded info: any sample contains some info

• frequency domain coded info: relationship between many samples
(no info in single sample)

90 of 92



Filter impulse, step and frequency response

• filter has: impulse, step and frequency response

• impulse response: filter output when input is a pulse (Dirac’s δ)

• step response: filter output when input is a perfect step

• each one contains complete info about the filter

• frequency response ⇐⇒ filter action on f-domain info

• step response ⇐⇒ filter action on t-domain info

• time domain coded info: any sample contains some info

• frequency domain coded info: relationship between many samples
(no info in single sample)

90 of 92



Filter impulse, step and frequency response

• filter has: impulse, step and frequency response

• impulse response: filter output when input is a pulse (Dirac’s δ)

• step response: filter output when input is a perfect step

• each one contains complete info about the filter

• frequency response ⇐⇒ filter action on f-domain info

• step response ⇐⇒ filter action on t-domain info

• time domain coded info: any sample contains some info

• frequency domain coded info: relationship between many samples
(no info in single sample)

90 of 92



Filter impulse, step and frequency response

• filter has: impulse, step and frequency response

• impulse response: filter output when input is a pulse (Dirac’s δ)

• step response: filter output when input is a perfect step

• each one contains complete info about the filter

• frequency response ⇐⇒ filter action on f-domain info

• step response ⇐⇒ filter action on t-domain info

• time domain coded info: any sample contains some info

• frequency domain coded info: relationship between many samples
(no info in single sample)

90 of 92



Filter impulse, step and frequency response

• filter has: impulse, step and frequency response

• impulse response: filter output when input is a pulse (Dirac’s δ)

• step response: filter output when input is a perfect step

• each one contains complete info about the filter

• frequency response ⇐⇒ filter action on f-domain info

• step response ⇐⇒ filter action on t-domain info

• time domain coded info: any sample contains some info

• frequency domain coded info: relationship between many samples
(no info in single sample)

90 of 92



Filter impulse, step and frequency response

• filter has: impulse, step and frequency response

• impulse response: filter output when input is a pulse (Dirac’s δ)

• step response: filter output when input is a perfect step

• each one contains complete info about the filter

• frequency response ⇐⇒ filter action on f-domain info

• step response ⇐⇒ filter action on t-domain info

• time domain coded info: any sample contains some info

• frequency domain coded info: relationship between many samples
(no info in single sample)

90 of 92



Filter impulse, step and frequency response

• filter has: impulse, step and frequency response

• impulse response: filter output when input is a pulse (Dirac’s δ)

• step response: filter output when input is a perfect step

• each one contains complete info about the filter

• frequency response ⇐⇒ filter action on f-domain info

• step response ⇐⇒ filter action on t-domain info

• time domain coded info: any sample contains some info

• frequency domain coded info: relationship between many samples
(no info in single sample)

90 of 92



Filter impulse, step and frequency response

• filter has: impulse, step and frequency response

• impulse response: filter output when input is a pulse (Dirac’s δ)

• step response: filter output when input is a perfect step

• each one contains complete info about the filter

• frequency response ⇐⇒ filter action on f-domain info

• step response ⇐⇒ filter action on t-domain info

• time domain coded info: any sample contains some info

• frequency domain coded info: relationship between many samples
(no info in single sample)

90 of 92



Anti-aliasing stage: RC low pass stage [Horowitz1989]

• simple RC low pass =⇒ -3 dB cutoff at ωc = 1/RC ; roll-off = 20
dB/decade (6 db/octave);

• 20 dB ≡ ×10 =⇒ after two decades gain is 1 % of DC value
• cascading n×RC =⇒ increases slope ( n × 20 dB/decade)
• n is a.k.a. the number of “poles” (zeros at denominator in the

transfer function, cfr. Laplace or Fourier transform)
• however we don’t get a sharper knee at -3dB cutoff: “many soft

knees do not a hard knee make” (cit. Horowitz-Hill); this clearly
appears when plotting response vs f /fc (normalized frequency)
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Anti-aliasing stage: Butterworth, Chebyshev, Bessel

• solution: active filters using amplifiers and feedback

• one discovers that a flat passband response and a fast roll-off are
in competion, we must trade in one for the other

• in filter theory multipole filters are classified, according to the
compromises they make, as: Chebyshev, Butterworth and Bessel

• it doesn’t matter the particular circuit used to obtain the response:
the name is associated to the response.

• frequency response for 6-poles active filters [Horowitz1989]
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Anti-aliasing stage: f-response

• frequency response for 6-poles active filters

• Butterworth: maximally flat passband response

• Chebyshev: accept some passband ripple to get steeper roll-off
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Anti-aliasing stage: t-response

• step response for 6-poles active filters

• Butterworth and Chebyshev: bad step-response (left) due to not
constant delay (≡ non linear phase resp.) (right)

• Bessel: trades roll-off slope for step-response
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Designing an anti-aliasing filter

To design a LPF:

• choose allowed range of gain in
passband (ripple)

• choose minimum frequency for
which response leaves passband

• choose maximum frequency for
which it enter the stopband

• choose minimum attenuation in
stopband

• not necessarily in this order...
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Exercise: design an anti-aliasing filter!

DATA: ADC has Fs = 100 MHz,
12 bit; allow for 6 % ripple in p-b
and require at least 10−2

attenuation (-40 dB) at Nyquist
frequency (Fs/2 = 50 MHz)

• 8-pole Cheb (6 % ripple): -40 dB at 1.35 × fc =⇒ 1.35× fc = 50
MHz =⇒ fc = 37 MHz =⇒ choose 8-pole filter

• 37 to 50 MHz = wasted land. Question: a real 12 bit ADC has ≈
60 dB dynamic range... is 40 dB at Fs/2 enough atten.?

• passband stops at 37 MHz =⇒ alias in passband for
f > 50 + (50− 37) = 100− 37 = 63 MHz (= 1.7fc )

• at 1.7fc attenuation is ≈ 0.001 (60 dB), compatible with effective
dynamic range
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Sallen-Key circuit

How is the antialias implemented in electronics? Most used electronic scheme to get Bessel/Chebyshev/Butterworth
response: Sallen-Key architecture. Same circuit gives all responses by suitable choice of ratios k1 and k2
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Sallen-Key circuit

Many stages: increase complexity, noise, power dissipation...can we
use just one?

Example of 1-stage 3-pole Bessel Sallen-Key as implemented in Luigi Bardelli’s “year 2000” board

One usually studies actual response using circuit simulators (spice,
pspice, ltspice...). In this case, we get ≈ 20 dB attenuation of aliased
frequencies in passband...is it acceptable?
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PSD: n/γ discrim. in liquid organic scintillators

• at fixed energy, protons stopping power � than electrons

• higher density of triplet states along track =⇒ signal has longer tail
• two integrations, usually slow (top left) and total (bottom left)
• Right picture: “total (E) vs slow (GDM)”. GDM normalized to

pulse amplitude. Gammas (i.e. electrons) on the left, neutrons (i.e.
protons) on the right.
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