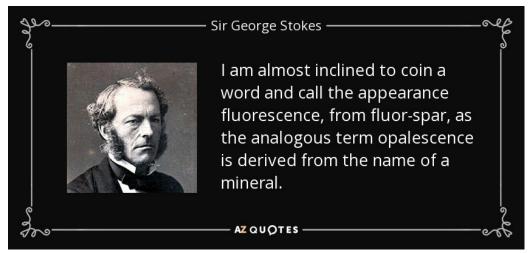


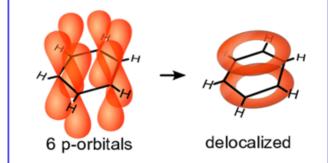
Scintillators for neutron detectors: principles, traditional scintillators and emerging technologies

Francesco Mastinu, Sara Carturan

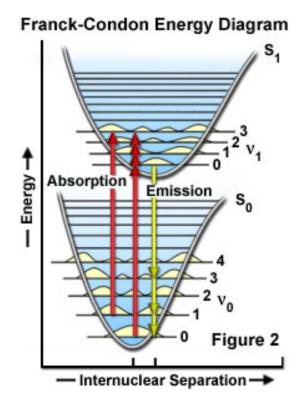
Outline

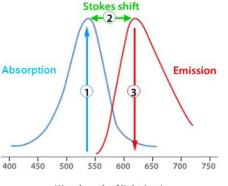


- Scintillator detectors: inorganic crystals, plastics and liquids
- Base principles of light emission in organic/inorganic materials: optical properties
- Design of a scintillator: energy transfer in plastics and liquids
- ➤ Ionization density: non-proportionality LY vs Energy→Ionization quenching
- Delayed fluorescence: basic principles of Pulse Shape Analysis
- > PSA for n-γ discrimination: Liquid vs Plastic scintillators
- New organic scintillators: siloxane based (PSS)
- Solid PSS with PSD capabilities: effect of high 1st dye loading



Luminescence in molecules : basic principles





Molecules with delocalized electrons such as aromatic systems (benzene....) display fluorescence: absorption of photon (very fast, 10^{-14} sec, Eg some eV) from S_0 up to S_1 (higher vibrational levels), internal relaxation (fast, 10^{-12} sec), radiative decay by fluorescence (quite fast, 10^{-9} sec)



Radiative emission processes

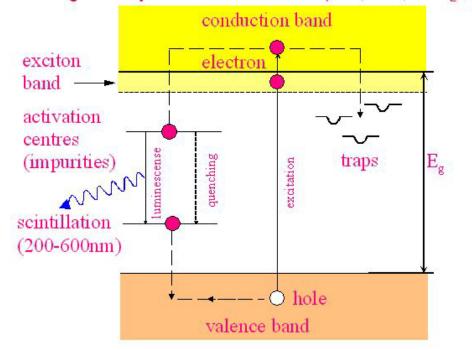
Jablonski Energy Diagram

Fluorescence is not the only enabled decay process....

T1 population is possible (thought rate is very slow)→phosphorescence

T1 annihilation is possible (in case of high T1 concentration)→delayed fluorescence

PSD is enabled in those systems



Radiative emission in inorganic crystals

1a. Inorganic crystalline scintillators (Nal, Csl, BaF₂...

Band structure: VB CB, energy gap 5-10 eV

Excitation generates e-h pairs

Recombination → light emission: improved with doping: CsI(TI)

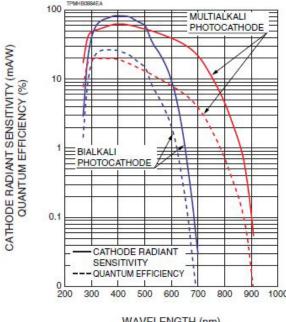
ns-μs (activation)
ms (traps)

Longer τ vs fluorescence (larger energy gap)
ns-μs (activation)
ms (traps)

A GOOD organic scintillator: the basic RECIPE

The cocktail (both liquids and solids)

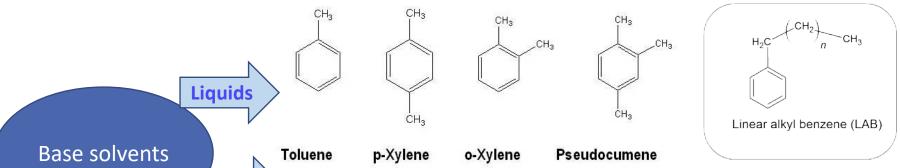
Solvent: absorbs the energy of impinging particle → UV emission (fluorescence) → Energy transferred to 1st solute molecules


1st Solute (Primary dye): highly efficient fluor → UV emission

2nd Solute (Wavelength shifter): absorption overlaps with emission from Ist dye→emits in the VIS range→increase attenuation length (decrease of re-absorption phenomena)→better match with PMT

sensitivity range (350-450 nm)

Energy t nsfer mechan S_{3X} X S_{2X} Y S_{2X} Z S_{1X} S_{2Y} Z S_{1X} S_{1Y} S_{1Z} E_Z


SPECTRAL RESPONSE

Organic scintillators: cocktails examples

Primary dyes (1-4 %wt.) QY ≈100% C CH n

H₃C

PVT (polyvinyltoluene)

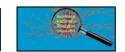
H CH CH

PS, polystyrene

Quantum Yield very low: 1-2%

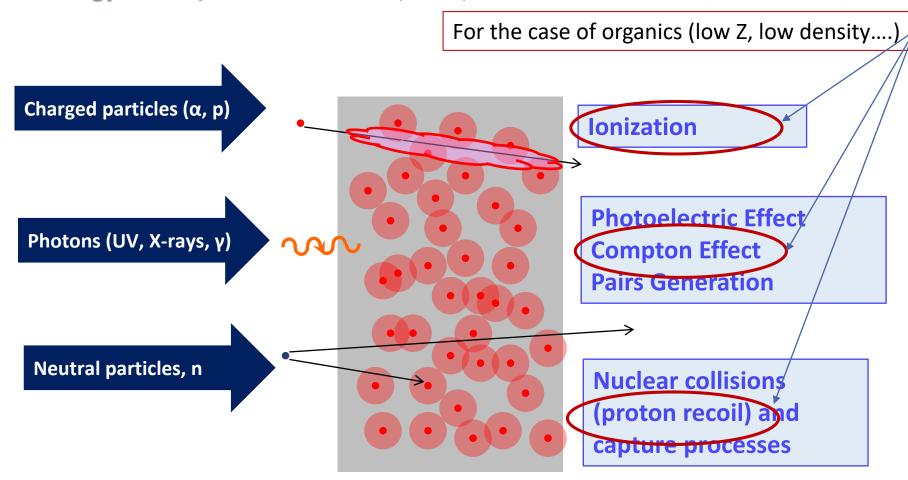
WLS dyes (<0.1 %wt.)

Scintillator	Molecular structure	Emission wavelength
PPO		357 nm
Butyl-PBD	+	363 nm
p-Terphenyl		340 nm


Solids

Scintillator	Molecular structure	Enission wavelength
Bis-MSB	CH ₃	477 nm
POPOP		410 nm

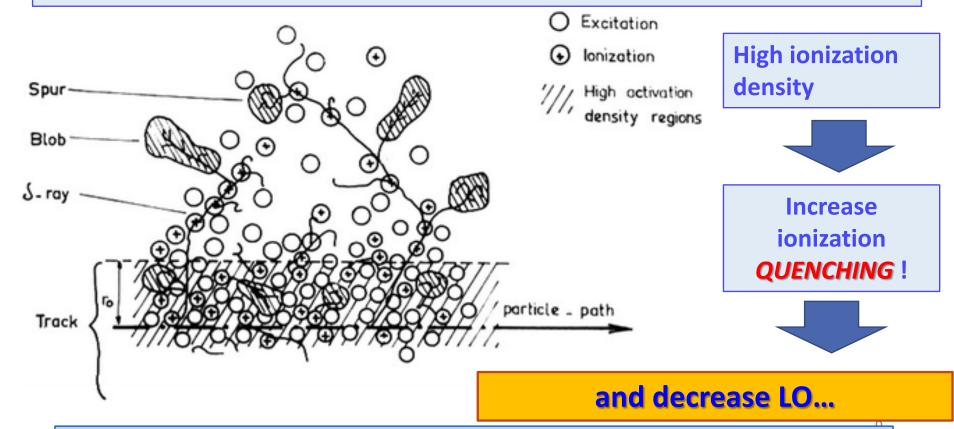
S. Carturan, F. Mastinu, SNRI 2016, October 24th-28th, 2016



The scintillation mechanism: involved interactions

Scintillation → occurs when a particle looses energy through the medium producing excitation of the molecules and *radiative* de-excitation

Energy loss dE/dx →can be a very complicated mechanism....(Bethe-Bloch)

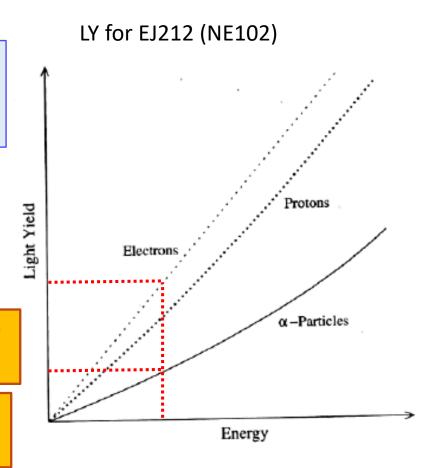


Ionizing particles tracks

Primary Ionizations: the ion kicks off electrons (Coulomb) from the nearby atoms all along its track→ molecules are excited up to very high ex levels (!)

Secondary Ionizations: fast secondary electrons (δ -rays) can efficiently ionize atoms far from the track \rightarrow again excitation but lower (in general) ionization density

Extent of Ionization Quenching and Light Yield


The extent of ionization quenching affects the Light Yield: different deexcitation mechanisms can take place→LY affected by particle's type and energy

Light output for electrons (and γ -rays as well) is much higher than in the case of α with the same energy....

Higher ionization density leads to higher ionization quenching effects (non radiative decay channels are more probable to occur)

LY does not scale linearly with E (only for selected particles and conditions)

and the light pulse decay changes in shape as well... (PSD basis!)

Organic scintillators: a quick glance

STATUS of the ART

Plastic scintillators

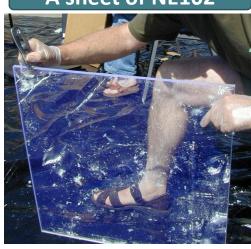
- ☐ good L.O. (65% vs anthracene)
- ☐ different <u>shapes</u> and volumes
- \Box Fast response time (2÷ 3 ns)
- ☐ relatively <u>low cost</u> (≈ 10€/g)

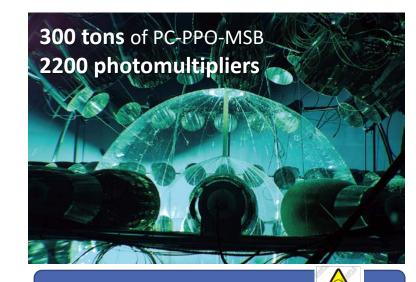
BUT ... Low radiation hardness (yellowing), no PSD (but recently YES), sensitivity to organic solvents (crazing,

swelling) (es. EJ212, NE102 etc.)

Liquid scintillators

- <u>high L.O.</u> (80% vs anthracene)
- n-y pulse shape discrimination
- <u>fast</u> response (3÷4 ns)


BUT...


Toxic, corrosive, **flammable**, explosive, high **volatility**, sensitivity to oxygen, **high cost**, **unfriendly** to environment (i.e. BC501, EJ301)

EJ212

A sheet of NE102

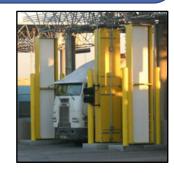
Borexino

Scientific Motivation

Neutron Detectors development: renewed interest

3000 €/liter U.S. Energy Dept. 2009:

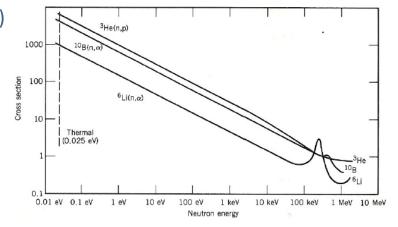
"No other currently available detection technology offers the stability, sensitivity and gamma/neutron discrimination of detectors using helium 3".


Wide range of applications

3He shortage

- ✓ Detectors in <u>Nuclear Physics</u> experiments
- ✓ <u>Monitors</u> in high neutron flux environments (Nuclear Plants, Spallation Neutron Sources, RIB accelerators...)

- ✓ Detectors and Monitors for Nuclear Medicine (BNCT)
- ✓ Materials Analysis (neutron diffraction)



Organic Scintillators can work!

High Energy Neutrons (E>1 MeV)

Multiple scattering by Hydrogen and Carbon

Low Energy Neutrons (E<500 keV – 1 MeV)

Neutron Capture by B

Or nuclei dissolved in
the siloxane rubber

n +
6
Li $\rightarrow \alpha$ + 3 He (Q=2.31 MeV)
n + 10 B $\rightarrow \alpha$ + 7 Li (Q=4.78 MeV)
n + 3 He \rightarrow p + 3 H (Q=0.764 MeV)

New Scintillators....

Search for

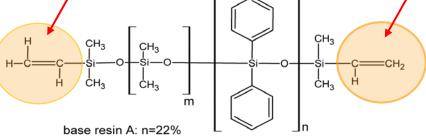
- ◆ GREEN scintillators → non-toxic, non-flammable, eco-compatible
- ◆ Resistant to chemicals, heat, radiation → long-lasting transparency and L.O.
- ◆ Able to detect fast AND low energy neutrons → doping with 6Li or 10B

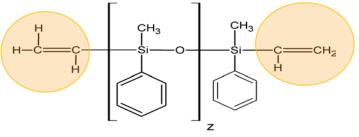
inspired by the the work of Z. Bell and co-workers (Z.W. Bell et al., IEEE TNS 51 (2004) 1773; Z.W. Bell et al.,

"Organic scintillators for neutron detection," vol. 4784, Proc. SPIE 2002)

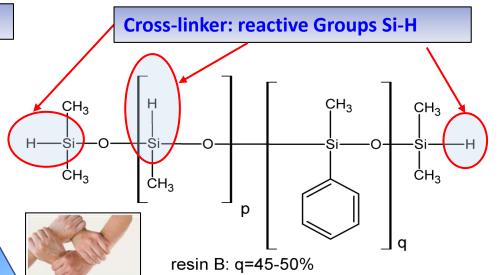
Production of polysiloxane based scintillators

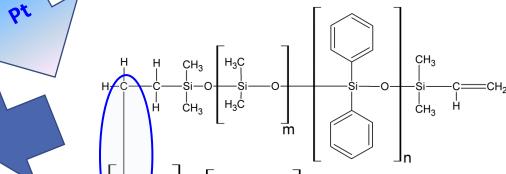
- ✓ Bio and Eco –compatible
- ✓ Elastomers: maintain physical properties on a wide range of temperature (-100 up to 250°C), Tg of PS and PVT about 90°C
- ✓ Resistant to most chemicals
- ✓ Resistant to radiation (shown later)
- ✓ Can be modeled in any solid shape
- ✓ Functional macromolecules → suitable substituents along the siloxane chain → phenyl groups → intrinsic fluorescence

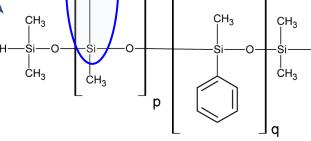




Polysiloxane synthesis: 2-part Pt-catalyzed addition





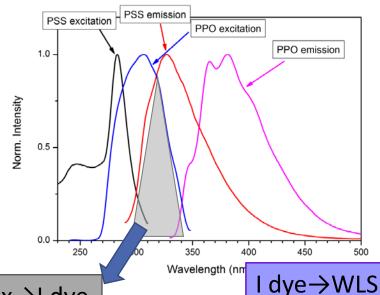


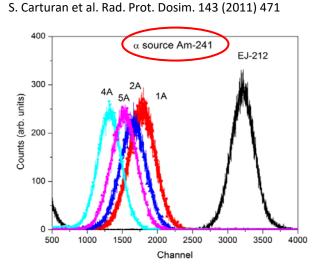
base resin A: z=100%

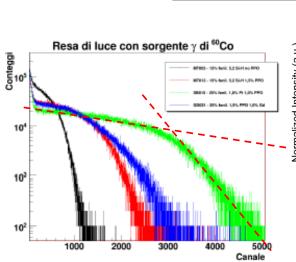
- tailoring the amount of phenyl groups (Fluo, R.I., dyes solub.)
- mind the Pt content! (clustering...)
- Pt catalyst can interact with dissolved dyes

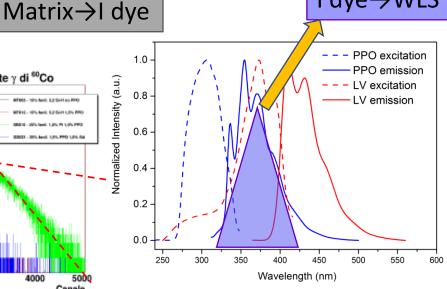
Vulcanized Rubber

Dissolving suitable dyes for scintillation: optical properties


Blue emitting polysiloxane based scintillators

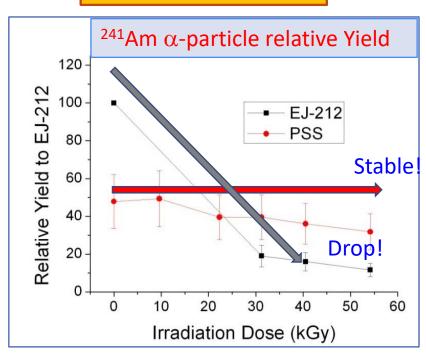

Several combinations of base siloxanes, Ist dye and WLS (concentrations changing...)

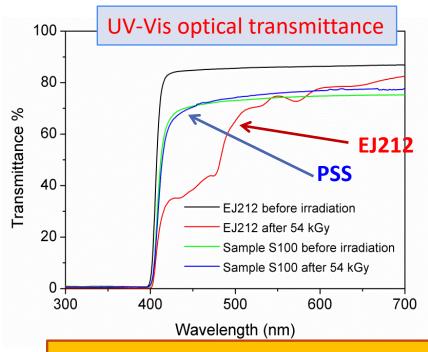

- Optical features (exc ,em)
 - Design... energy transfer
- Light Yield vs EJ212
 - Alpha (²⁴¹Am source)
 - Gamma (60Co source)



Quaranta et al. IEEE TNS , 57 (2010) 891 Quaranta et al. Opt. Mater. 32 (2010) 1317

Polysiloxane based scintillators: performances




- ✓ Ease of manufacture, low cost (about 1 €/g)
- ✓ Functional groups → optical features tailoring
- ✓ Good dyes solubility \rightarrow L.O. up to 70% EJ212
- ✓ Carborane solubility → fast/thermal n detected

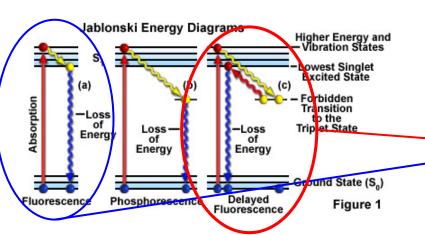
⁶⁰Co γ-rays irradiated EJ212 and PSS scintillators (1%PPO, 0.02% LV); Calliope (ENEA facility)

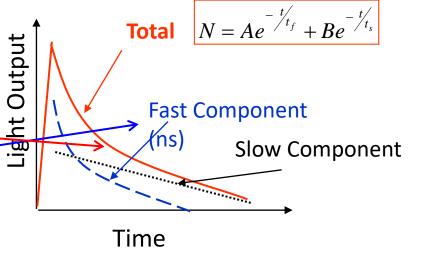
Are RAD Resistant?

A. Quaranta, S. Carturan et al., Mat. Chem. Phys. 137 (2013) 951.

Higher Rad Res than EJ...

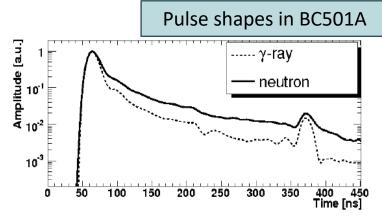
Pulse Shape Discrimination: basic principles




Is n-y discrimination possible by PSA in PSS?

Different particles induce....

Different shape of light pulse



Delayed fluo

Triplet-triplet annihilation T1 + T1 → S0 + S1 S1→S0 + hv

Incident particles with high ionization density (protons, alpha....) produce high concentration of T1 → increase slow component contribution → discrimination enabled

P. Söderström et al., NIM A 594 (2008)79

Pulse Shape Discrimination in solids ???

Several algorithms for n-y PSD ...

Literature on **LIQUIDS** only ... T1 diffusion

Recent results on PVT

heavily loaded with 1st dye (PPO): INCREASED

concentration of T1!

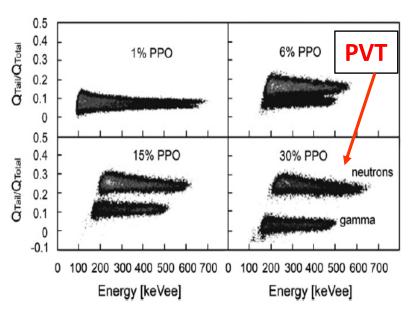
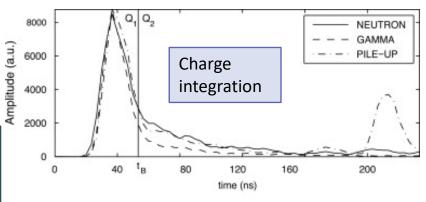
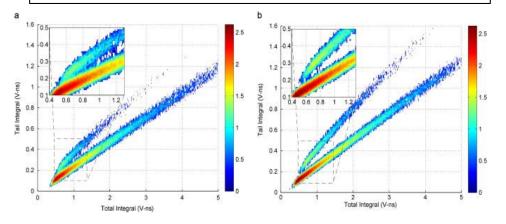




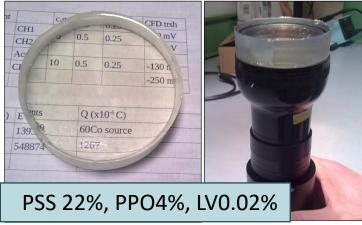
Fig. 3. Examples of experimental PSD patterns showing increase of neutron-gamma peak separation at increasing PPO concentration in a PVT polymer matrix.

N. Zaitseva et al., NIMA668(2012)88-93

PSD of γ-rays and neutrons using a 120keVee threshold in EJ-299 (a) and EJ-309 (b)

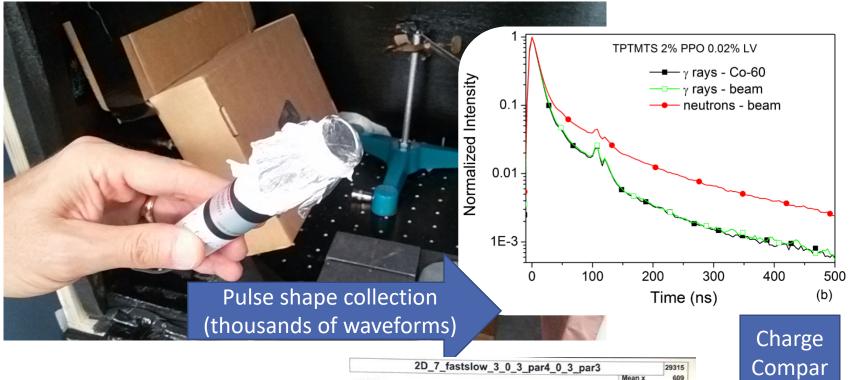
S. Pozzi et al., NIM A, 2013

Could it work in PSS?

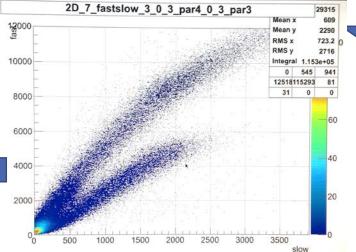

Loading with PPO... Experiment at CN accelerator

- Pulsed proton beam (2 ns, 3 MHz) on 7LiF target
- Proton energy 4.0 MeV → Main neutron peak
 2.3 MeV 7Li(p,n)7Be (and a flash of γ-rays)

Testing PSD capabilities of...



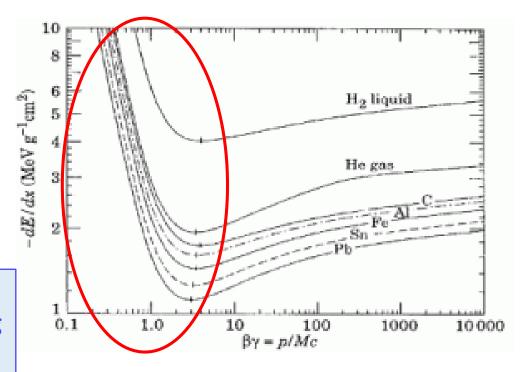
EJ-299-33


And compare them ...

ison

Spare Slides

The scintillation mechanism: ionization density


Energy loss dE/dx vs Energy for charged particles → Bethe-Bloch

relationship (cumbersome...)

Maybe oversimplifying....

$$-\frac{dE}{dx} = \frac{4\pi e^4 z^2}{m_0 v^2} NB$$

Strong dependence on the atomic number of the impinging particle and its velocity

Slower moving particles, (i.e. particles with lower energy), lose energy more quickly as a function of distance!

This is due to the fact that slower moving particles when passing through a material have more time to interact with the electrons