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Outline

Digital Processing with Focus onto Neutron Detection

Focus: Key issues behind Pulse Shape Discrimination with digitized
signals
Aim: understanding few basic facts (not a comprehensive treatment)

Outline:

• First lesson:

◦ Introduction: general framework, PSD examples
◦ ADC as additional noise source
◦ Signal reconstruction from samples (interpolation)

• Second lesson:

◦ Timing as a study case (role of interpolation noise)
◦ Application to n/γ PSD
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Introduction: sensor, read-out, digitizer
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Detection cell: sensor and read-out circuit
• active volume

• energy absorbed =⇒ info
carriers

• carrier collecting device
(electrodes, photo-something)

• Sensor (tc : carrier collection
time)

• read-out circuit (RC: readout
time constant)

• signal processing (e.g. filtering
for SNR optimization)

• convert amplitude to digital

• read-out + signal processing =
Front End Electronics (FEE)

Active
Volume

Particle
Particle Track

Electrode Electrode

Sensor (gas, semiconductor)

Read-Out Circuit

+1

C R

Shaping, BLR

A/D Conv.(ADC, QDC,...)

to DAQ

Front End Electronics
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Carrier collection and Read-Out characteristic times

• current pulse from sensor: total
duration tc (collection time)

• read-out signal shape: depends on
read-out time constant RC

• RC � tc : voltage across R�C
V (t) ∼ R i(t)

• RC � tc : charge first integrated on
C (max voltage ∼ Q/C reached after
tc ), then C is discharged exponentially
V (t) ∝ e−t/RC

• tc : few ns (fast scintillators,
microchannel plates) −→ 10-100 ns
(semiconductors) −→ µs (ionization
chambers)

Figure 4.1 from Ref. [Knoll00].
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Analog and digitizing chains compared

Active
Volume

Particle
Particle Track

PMT or Photodiode

Sensor (scintillator)

Read-Out Circuit
(charge sensitive preamplifier)

−

+

A

C Shaping A/D conv.

to DAQ

Front End Electronics

Active
Volume

Particle
Particle Track

PMT or Photodiode

Sensor (scintillator)

Read-Out Circuit
(charge sensitive preamplifier)

−

+

A

C

Front End Electronics (with digitizer)

Sampling ADC

N-bits (N∼ 8÷ 14)
Fs ∼ 0.1÷ 1 GSPS (SPS: samples per second)

DSP
to DAQ
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Advantages of digitizers

• better stability with respect to analog circuits

• flexibility (processing just a matter of calculation)

• easy pulse shape analysis implementation

• predictable and reduced dead time

• easy implementation of pile-up rejection

• processing not possible with analog can be implemented
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How’s information coded?

Deposited Energy:

• number of generated information carriers (ion pairs, e-h pairs,
scintillation photons) =⇒ total produced charge Q;

• retrieved as
∫
i(t)dt (RC � tc → current signal) or...

• maximum amplitude of V (t) (RC � tc → charge signal);

Time of interaction:

• time at which some signal feature (e.g. threshold crossing) occurs
(time mark);

• unavoidable delay between interaction time and time mark;
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How’s information coded?

Point of gamma interaction (Hyperpure Ge detectors, e.g. AGATA):

• needed to reconstruct full gamma energy when multiple interaction
occur before absorption;

• need segmented electrodes to identify a subvolume [Akkoyun12];

• within subvolume, interaction point obtained from all signal shapes
(comparing with waveform database) with 1 mm resolution.

Radiation type (neutron? gamma? charged fragment?):

• usually coded into time evolution of signals;

• technique goes under PSA or PSD names (Pulse Shape Analysis,
Pulse Shape Discrimination);

• often obtained from correlations (e.g. PSD param vs energy);

• collection time, relative amplitude fast/slow components.
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From signal shape to radiation type: Si detector
Pulse Shape Discrimination example: nuclear fragment stopped in Si

detector (FAZIA collaboration).

• collection time and maximum value of current depend on (Z, A)
and E

• physical process involves:

◦ ionization vs depth (Bragg curve);
◦ electron-hole plasma erosion time;

• e.g., current signal max: study
of noise reduction/interpolation

• figure: energy vs Imax recent data
FAZIA collab. (G.Pastore et al.,
to be published)

• resulting isotopic identification
(PID spectrum)
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t-domain vs f-domain

• information coding is best understood in the time domain
(t-domain);

• amplitude, rise-time, shape, are all t-domain features;

• sometimes frequency domain (f-domain) useful (e.g. to understand
processing with filters, noise behaviour, to exploit Fourier T., etc.);

• we will mainly deal with t-domain issues, using f-domain when
needed for better understanding.
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Noise from the ADC
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First Message: Sampling ADC as noise source
NOISE SOURCES EVIDENCED BY ELLIPSES!

Active

Volume

Particle

Particle Track

PMT or Photodiode

Sensor (scintillator)

Read-Out Circuit

(charge sensitive preamplifier)

−

+

A

C Shaping A/D conv.

to DAQ

Front End Electronics

Active

Volume

Particle

Particle Track

PMT or Photodiode

Sensor (scintillator)

Read-Out Circuit

(charge sensitive preamplifier)

−

+

A

C

Front End Electronics (with digitizer)

Sampling ADC

N-bits (N∼ 8 ÷ 14)

Fs ∼ 0.1 ÷ 1 GSPS

DSP
to DAQ
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First Message: ADC noise and dynamic range

Take ADC noise into account for low noise energy measurements (e.g.
X-ray detectors) or shape related measurements (e.g. for threshold
crossing and signal maximum you can’t average over many samples).
Choose ADC based on the amount of noise already present in your
input signal! For a noisy detector, low noise ADC not needed. Useful
to compare Read-Out vs ADC dynamic range (≈

√
12 2ENOB):
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Sampling ADC: performed operations

A sampling-ADC:

• measures amplitude at the analog input;

• produces N-bits digital numbers (N called resolution);

• 2N possible output levels =⇒ some approximation needed

• measurements most often separated by constant time interval
(sampling period : Ts)

• Fs = 1/Ts (in S/s, samples/second) called sampling frequency

• in summary:

1. sampling: discretization of independent variable (e.g. time);
2. quantization: discretization of dependent variable (e.g. amplitude);
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ADC: math model of sampling

• from continuous (analog) signal xc (t) to sequence x [n] (n ∈ Z)

x [n] = Q{xc(n Ts)}

where Ts ≡ sampling period, Fs = 1/Ts sampling frequency and Q
is “amplitude quantization” operator

• Can we recognize the two main tasks operated by an ADC?

1. sampling: discretization of independent var. → that’s the xc (n Ts);
2. quantization: discretization of dependent var. → approx xc (n Ts) to

the closest (or immediately below) admittable value Q{xc (n Ts)}

• Widespread adopted convention:

1. x(t) continuous-time signal (lower case “x”, parentheses)
2. x[n] discrete-time signal (lower case “x”, square brackets).
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2. quantization: discretization of dependent var. → approx xc (n Ts) to
the closest (or immediately below) admittable value Q{xc (n Ts)}

• Widespread adopted convention:

1. x(t) continuous-time signal (lower case “x”, parentheses)
2. x[n] discrete-time signal (lower case “x”, square brackets).
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Quantization and noise...

1. sampling: discretization of independent variable;
2. quantization: discretization of dependent variable;

• we start from point 2);

• N-bit ADC =⇒ 2N possible values (0 ÷ 2N − 1);
• quantized values 6= “exact values”:
e[n] = xc(n Ts) − Q{xc (n Ts)} 6= 0

• e[n] (quantization error) varies from sample to sample;
• quantized levels “close enough” + complex signal (e.g. speech)

=⇒ difference fluctuates randomly from sample to sample
[Oppenheim2010];

• also true for simple signals + large BW noise (detector pulse!);

• quant. noise model: “white” noise of variance σ2
Q =

1

12

(
R

2N

)2

• R is ADC range in Volt (take R = 2N to get the equivalent in bits);
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Real ADC and noise...

• thermal and shot noise in internal ADC circuit =⇒ a real ADC will
add much more than quantization noise

• a real ADC can be modelled as an “ideal” ADC plus a noise
generator adding noise to the input (see figure);

ADC

IDEAL
N bits

input

REAL ADC

noise

+

• we can include quantization noise into the generator and assume
no need for quantization in the “ideal” ADC;

• real ADC noise has variance σ2
eff > σ2

Q
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ENOB and noise (1)

• quantization noise, “white” noise, variance σ2
Q =

1

12

(
R

2N

)2

;

• “real” ADC: added noise has variance σ2
eff > σ2

Q

• manufacturers quote effective-number-of-bits (ENOB)

• ENOB is the number you need instead of N in σ2
Q =

1

12

(
R

2N

)2

to get σ2
eff , i.e. σ2

eff =
1

12

(
R

2ENOB

)2

ENOB = log2

(
R√

12σeff

)
• The “textbook” ENOB definition is actually ENOB =

SNR(dB) − 1.76

6.02
where SNR is the signal-to-noise ratio

including effects of harmonic distortion, clock jitter etc. My definition is equivalent to this one provided that σeff is

the dominant contribution to SNR, which is usually the case in nuclear physics.
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ENOB and noise (2)

• dynamic range: 1 bit lost each doubling of σeff (R/σeff ∝ 2ENOB);

• in bits (R = 2N) we get σeff ∝ 2N−ENOB =⇒ N− ENOB
controls how much noise added by ADC;

• greater N− ENOB =⇒ more ADC noise;
• typical value N− ENOB = 1÷ 2
• comparing ADC noise to noise before ADC: express R in Volts

(e.g. R = 2V, N= 14, ENOB= 12 =⇒ σeff = 1.15LSB = 140µV
where 1 LSB= R/2N).

• ENOB and Effective Resolution (a DC spec) not the same
(distortion and quantization noise not included). However...

• in practice input ref. noise accounts for most SINAD, i.e.
determines most of N − ENOB

• actual effective resolution and ENOB usually differ by a few 0.1
LBS
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Shannon, signal reconstruction,
interpolation

20 of 92



ADC: questions about sampling

• Is some info lost in the process?

• If info is lost, when and how?

• Under which conditions is the loss acceptable?

• no final answer (ask questions each time);

• useful to grasp the general aspect of the problem.
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Discrete-Time and “proper” sampling

1. sampling: discretization of independent variable;

2. quantization: discretization of dependent variable;

Let’s come to point 1), time-discretization: x [n] = xc (n Ts)
Intuition =⇒ maximum acceptable sampling period must exists:
Starting from “close” samples...

Time

Amplitude

...we can still recognize signal shape from samples...
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1. sampling: discretization of independent variable;

2. quantization: discretization of dependent variable;

Let’s come to point 1), time-discretization: x [n] = xc (n Ts)
Intuition =⇒ maximum acceptable sampling period must exists:
...we increase the sampling period Ts ...

Time

Amplitude
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Discrete-Time and “proper” sampling

1. sampling: discretization of independent variable;

2. quantization: discretization of dependent variable;

Let’s come to point 1), time-discretization: x [n] = xc (n Ts)
Intuition =⇒ maximum acceptable sampling period must exists:
...still more “space” between samples...

Time

Amplitude

...so that we take just one sample (by chance) during the signal...
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Discrete-Time and “proper” sampling

1. sampling: discretization of independent variable;

2. quantization: discretization of dependent variable;

Let’s come to point 1), time-discretization: x [n] = xc (n Ts)
Intuition =⇒ maximum acceptable sampling period must exists:
...and when Ts ≥ signal duration...
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Discrete-Time and “proper” sampling

1. sampling: discretization of independent variable;
2. quantization: discretization of dependent variable;

Let’s come to point 1), time-discretization: x [n] = xc (n Ts)
Intuition =⇒ maximum acceptable sampling period must exists:
...and when Ts ≥ signal duration...

Time

Amplitude

... signal not even recognized as such!
Need for recipe: what is maximum Ts for which I can get back the
original (continuous) signal? How to get it back from samples?
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Why signal reconstruction? E.g. timing!

• Timing: extracting a “time mark” from a signal, e.g. with a
leading edge discriminator (LED);

• LED: device emitting a logic “true” signal when input voltage
crosses a fixed threshold (e.g. oscilloscope trigger)

in

out

threshold

t

true

false t

Figure 1: Leading edge discriminator
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Timing with digitized signals

• A LED “fires” when signal assumes a given value: e.g. LED looks
for tx: s(tx) = Vthreshold

• what about timing with a digitized signal s[n] where
s[n] = s(n Ts)?

• “digital timing” still means: look for tx : s(tx ) = Vthreshold

• approximating the crossing time to the closest sample could be too
rough in many applications (surely if we want sub-nanosecond
resolution!)

• we would like to do better!

• the event s[n] = s(n Ts) = Vthreshold is very unlikely;

• threshold crossing usually happens “in between samples”;

• knowing the signal “in between samples” we could get the exact
crossing time;
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A possible recipe: Shannon Theorem
Shannon Theorem

• in order to obtain “proper” sampling (i.e. being able to reconstruct
signal xc (t) from equally spaced samples x [n] exactly)

1. continuous signal must be bandlimited =⇒ no components in
f-domain (Fourier transform) with f > Fmax (Nyquist freq.)

2. samples must be spaced by Ts ≤
1

2
Tmax with Tmax =

1

Fmax
,

i.e. sampling frequency Fs ≥ 2Fmax

• recipe to get back xc (t):

xc (t) =
+∞∑

n=−∞
x [n] · sinc

(
t

Ts
− n

)
(1)

where sinc(x) =
sin(πx)
πx (sinc: cardinal sine function).
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Shannon: periodic frequency spectrum
Xs (jΩ) =

1

Ts

+∞∑
k=−∞

Xc (Ω − kΩs )

original Xc (jΩ) plus ∞ copies
shifted by kΩs

• To re-construct the original
FT : use frequency-selective
filter keeping the original and
discarding the copies

• use inverse FT to obtain xc(t)

• copies must NOT overlap =⇒ if
ΩN is maximum frequency in
xc(t) then we want

Ωs −ΩN ≥ ΩN =⇒ Ωs ≥ 2ΩN
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Shannon Theorem: the sinc function

The sinc is the inverse FT of (the response of) the perfect
reconstruction filter: the brick wall filter:

Vin Vout

Frequency

Vout/Vin

1

0 fc

The sinc function:

1. extends to ±∞;

2. it is = 1 in x = 0;

3. it is = 0 for
integer x .

-6 -4 -2 0 2 4 6

-0.2

0

0.2

0.4

0.6

0.8

1

sinc(x)sinc(x)
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Block diagram of a digitizer

Input (single-ended or
differential)

Impedence Matching

Analog signal

Digital signal

Gain/Attenuation Anti-Aliasing ADC Signal Storage

DSP Block

ACQ buffer

Trigger Logic

SOME WORDS ABOUT THE ANTIALIASING FILTER...

• input stage: can be single ended or differential, matches transmission line characteristic impedance• gain: adjust overall dynamic range, variable gain to change max non-saturating amplitude (ADC range is fixed)• antialias: LPF needed to cope with Sampling Theorem, more about it later• ADC: produces one binary value every Ts (sampling period, Fs = 1/Ts sampling frequency)• Storage: here we keep digital signal until we have processed it as needed• DSP and ACQ buffer: signal elaboration, information extraction (on-board µprocessor or FPGA)• Trigger Logic: often inside the same FPGA used for storage and elaboration
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Antialiasing filter

• low pass filter: to limit the bandwidth before sampling;

• a component at Fs/2 + ∆f appears at Fs/2−∆f after sampling
(aliasing);

• importance of good t-domain response (e.g. step response);
• a real antialias filter can’t eliminate f > Fs/2 completely;
• aliasing will worsen the SNR of the digitizer (must be always

compared to the SNR of the original signal);
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Pulse f-spectrum, ideal, w/ noise, w/ anti-alias
Example: Analog f-spectrum (i.e. no mirror images) of PMT pulse
lasting about 50 ns (black curve). Detector signals have vanishing
frequency content at high freq. (easier job for antialias filter).

In red: ADC noise added. In green: with antialias filter.
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Pulse f-spectrum, ideal, w/ noise, w/ anti-alias
Example: Analog f-spectrum (i.e. no mirror images) of PMT pulse
lasting about 50 ns (black curve). Detector signals have vanishing
frequency content at high freq. (easier job for antialias filter).

Only 11 ENOB (though N=14 bit resol): noise > signal near Nyquist.
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Pulse f-spectrum, ideal, w/ noise, w/ anti-alias
Example: Analog f-spectrum (i.e. no mirror images) of PMT pulse
lasting about 50 ns (black curve). Detector signals have vanishing
frequency content at high freq. (easier job for antialias filter).

Only 12 bit resol. However 10.5 ENOB =⇒ reasonable SNR.
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Pulse f-spectrum, ideal, w/ noise, w/ anti-alias
Example: Analog f-spectrum (i.e. no mirror images) of PMT pulse
lasting about 50 ns (black curve). Detector signals have vanishing
frequency content at high freq. (easier job for antialias filter).

Shorter pulse! More high frequency content. Now 500 MSPS
probably better!
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Shannon Theorem: additional remarks/caveats

• equation (1) is a particular instance of interpolation formula

f (t) =
+∞∑

n=−∞
cn · g

(
t

Ts
− n

)
(2)

where g(t) is called interpolation kernel ;
• “interpolation is the process of estimating the intermediate values

of a continuous event from discrete samples” [Keys1981].
• usually cn = x [n], i.e. eq.(2) is a discrete convolution (x ∗ g)
• you want to get back the original signal...
• ...in real life you never sample the original signal (artifacts added

by input circuit, antialias filter, ADC noise,...)
• “original” signal already has fluctuations/noise (e.g. statistical

fluctuations in carrier production, read-out circuit noise,...)
• interpolation-induced deviations of the same order of the ones

already present would not be much of a problem...
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Interpolation and frequency domain

In discrete-time, as in continuous time, t-domain convolution of
signals ≡ product of their Fourier Transforms. Convolution with sinc
removes all frequencies above Nyquist frequency (Fs/2).

Spectrum of 50 ns pulse+ADC noise sampled at 12 bit 250 MSPS.
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Alternative interpolation kernels...
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Figure 2: Interpolation kernels and their
Fourier Transforms (from [Bardelli2005])

• Alternative kernels (left) with their
Fourier Transforms (right)

• sinc (k) is the only bandlimited kernel!

• sinc(t) best kernel for BW limited
signals and f-domain

• other kernel comparable or better for
detector signals and t-domain

• sinc interpolation can’t be calculated
exactly anyway:

1. needs ∞ number of samples (sinc not
limited in t-domain);

2. contribution from “distant” samples ≤
finite numerical precision; (bad: no
exact calc.; good: # of terms <∞);
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signals and f-domain

• other kernel comparable or better for
detector signals and t-domain

• sinc interpolation can’t be calculated
exactly anyway:

1. needs ∞ number of samples (sinc not
limited in t-domain);

2. contribution from “distant” samples ≤
finite numerical precision; (bad: no
exact calc.; good: # of terms <∞);
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Figure 3: Interpolation kernels and their
Fourier Transforms (from [Bardelli2005])

• What happens with the alternatives?

• 1) not bandwidth limited;

• 2) they also attenuate in-band (below
Nyquist).

• windowed sinc (g, i): sinc × bell
shaped function to trim borders and
get finite length

• other kernels (a, c, e) much more
extended in f-domain

• linear (tent) kernel (a) amounts to
linear interpolation (connects points
with segments)

34 of 92



Interpolation: alternative kernels

Mon Dec 13 22:07:28 2004

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (a)
Linear kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (c)
Cubic kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (e)
Penta kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (g)
Windowed Sinc 6 pts. kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (i)
Windowed Sinc 8 pts. kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (k)
Sinc kernel

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(b)
FT of Linear

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(d)
FT of Cubic

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(f)
FT of Penta

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(h)
FT of Windowed Sinc 6 pts.

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(j)
FT of Windowed Sinc 8 pts.

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(l)
FT of Sinc

Figure 3: Interpolation kernels and their
Fourier Transforms (from [Bardelli2005])

• What happens with the alternatives?

• 1) not bandwidth limited;

• 2) they also attenuate in-band (below
Nyquist).

• windowed sinc (g, i): sinc × bell
shaped function to trim borders and
get finite length

• other kernels (a, c, e) much more
extended in f-domain

• linear (tent) kernel (a) amounts to
linear interpolation (connects points
with segments)

34 of 92



Interpolation: alternative kernels

Mon Dec 13 22:07:28 2004

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (a)
Linear kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (c)
Cubic kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (e)
Penta kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (g)
Windowed Sinc 6 pts. kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (i)
Windowed Sinc 8 pts. kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (k)
Sinc kernel

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(b)
FT of Linear

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(d)
FT of Cubic

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(f)
FT of Penta

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(h)
FT of Windowed Sinc 6 pts.

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(j)
FT of Windowed Sinc 8 pts.

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(l)
FT of Sinc

Figure 3: Interpolation kernels and their
Fourier Transforms (from [Bardelli2005])

• What happens with the alternatives?

• 1) not bandwidth limited;

• 2) they also attenuate in-band (below
Nyquist).

• windowed sinc (g, i): sinc × bell
shaped function to trim borders and
get finite length

• other kernels (a, c, e) much more
extended in f-domain

• linear (tent) kernel (a) amounts to
linear interpolation (connects points
with segments)

34 of 92



Interpolation: alternative kernels

Mon Dec 13 22:07:28 2004

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (a)
Linear kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (c)
Cubic kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (e)
Penta kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (g)
Windowed Sinc 6 pts. kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (i)
Windowed Sinc 8 pts. kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (k)
Sinc kernel

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(b)
FT of Linear

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(d)
FT of Cubic

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(f)
FT of Penta

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(h)
FT of Windowed Sinc 6 pts.

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(j)
FT of Windowed Sinc 8 pts.

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(l)
FT of Sinc

Figure 3: Interpolation kernels and their
Fourier Transforms (from [Bardelli2005])

• What happens with the alternatives?

• 1) not bandwidth limited;

• 2) they also attenuate in-band (below
Nyquist).

• windowed sinc (g, i): sinc × bell
shaped function to trim borders and
get finite length

• other kernels (a, c, e) much more
extended in f-domain

• linear (tent) kernel (a) amounts to
linear interpolation (connects points
with segments)

34 of 92



Interpolation: alternative kernels

Mon Dec 13 22:07:28 2004

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (a)
Linear kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (c)
Cubic kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (e)
Penta kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (g)
Windowed Sinc 6 pts. kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (i)
Windowed Sinc 8 pts. kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (k)
Sinc kernel

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(b)
FT of Linear

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(d)
FT of Cubic

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(f)
FT of Penta

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(h)
FT of Windowed Sinc 6 pts.

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(j)
FT of Windowed Sinc 8 pts.

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(l)
FT of Sinc

Figure 3: Interpolation kernels and their
Fourier Transforms (from [Bardelli2005])

• What happens with the alternatives?

• 1) not bandwidth limited;

• 2) they also attenuate in-band (below
Nyquist).

• windowed sinc (g, i): sinc × bell
shaped function to trim borders and
get finite length

• other kernels (a, c, e) much more
extended in f-domain

• linear (tent) kernel (a) amounts to
linear interpolation (connects points
with segments)

34 of 92



Interpolation: alternative kernels

Mon Dec 13 22:07:28 2004

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (a)
Linear kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (c)
Cubic kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (e)
Penta kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (g)
Windowed Sinc 6 pts. kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (i)
Windowed Sinc 8 pts. kernel

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Time (samples)
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-0.2
0

0.2
0.4
0.6
0.8

1 (k)
Sinc kernel

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(b)
FT of Linear

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(d)
FT of Cubic

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(f)
FT of Penta

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(h)
FT of Windowed Sinc 6 pts.

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(j)
FT of Windowed Sinc 8 pts.

Normalized frequency
1 2 3 4 5

Normalized frequency
1 2 3 4 5

(l)
FT of Sinc

Figure 3: Interpolation kernels and their
Fourier Transforms (from [Bardelli2005])

• What happens with the alternatives?

• 1) not bandwidth limited;

• 2) they also attenuate in-band (below
Nyquist).

• windowed sinc (g, i): sinc × bell
shaped function to trim borders and
get finite length

• other kernels (a, c, e) much more
extended in f-domain

• linear (tent) kernel (a) amounts to
linear interpolation (connects points
with segments)
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Interpolation: alternative kernels...

Other interpolation kernels (from [Keys1981]):

• kernel b) corresponds to a) in previous slide;

• kernel d) is [Keys1981] version of a cubic kernel;

• a), a.k.a. ”box interpolation” kernel, produces a stepped result;

• c) is cubic box-spline (a case for which cn 6= x [n])
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Generic interpolation and cubic splines

Starting from samples x [n] = x(n Ts), look for f (t) in

K (g , Ts) =

{
f (t) | f (t) =

+∞∑
m=−∞

cm g(t/Ts −m)

}
Find member of K passing through the samples (i.e. find cm):∑+∞

m=−∞ cm g(n −m) = x [n] ∀n ∈ Z

E.g.: g(t) could be a box-spline
(a.k.a. B-spline):
B-spline kernels obtained from box
function by multiple convolution
with itself (Picture from
[Ottanelli2016]).
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Interpolation at work (from [Ottanelli2016])
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Cubic kernels compared

Cubic kernel c) of Fig.3 [Bardelli2004]
Cubic B-spline [Hou1978]

Faster and simpler: [Bardelli2004] (cm are just signal samples)
More powerful: cubic B-splines (cm cumbersome to calculate but... a
fast approximated calc possible using IIR or FIR filters [Unser1993,
Ottanelli2016]!)
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Interpolating a detector pulse

Original signal (note the “sudden” start) and its samples.
Sampling includes ADC noise (12 bit, 250 MSPS, 10 ENOB).
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Interpolating a detector pulse

This is what we know after sampling.
Perfect reconstruction not possible (noise, aliasing,...).
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Interpolating a detector pulse

Cubic interpolation from [Bardelli2004], × 10 oversampling.
Exploits the unique polynomial through 4 consecutive samples.
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Interpolating a detector pulse

Now we show Cubic Spline interpolation, × 10 oversampling.
Note different behaviour where signal varies rapidly.
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Interpolating a detector pulse

...and finally sinc interpolation. Note: all similar where signal varies
slowly. Artifact and different behaviour at fast transition. Why?
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Interpolating a detector pulse

Original spectrum (black) ends at original Nyquist freq. Interpolated
signal spectrum extended beyond Nyquist (black is periodic!).
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Interpolating a detector pulse

New signal spectrum distorted below Nyquist. Sinc interpolation: less
in-band attenuation and less artifacts beyond Nyquist (good?)
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Interpolating a detector pulse

Expanded view: frequencies below Nyquist (Fs/2 = 125 MHz). Sinc
interpolation preserves amplitude where noise could dominate.
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Interpolation error and sampling clock phase

• N.B. in what follows we assume noiseless signals!

• not under Shannon =⇒ interpolated signal 6= original signal

• we could define e(t) = S(t)− f (t) as interpolation error

• e(t) depends on the position of the interpolation nodes!

• in other words: reconstruction will be different if original signal is
sampled at different points

• this is what happens in digitizing detector signals: sampling clock
phase is random with respect to detector signal

• suppose you digitize the same signal shape many times, looking at
reconstructed amplitude at a fixed time (t0 after signal start): each
time you find a slightly different amplitude

• it’s a kind of noise: interpolation noise!
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Simulation: interpolation “noise”
• sampling of noiseless signal S(t) adding a random time shift

0 < δ < Ts , i.e. S [n] = S(n Ts + δ)

• each signal has its δ (same for all samples)
• simulation: generate a set of Sδ[n]
• for each Sδ[n] obtain interpolated Sδ(t) (g(t) is kernel):

Sδ(t) =
+∞∑

n=−∞
Sδ[n] · g

(
t

Ts
− n

)
• perfect reconstruction =⇒ S(t − δ) = Sδ(t) (≡ S(t) = Sδ(t + δ))
• amplitude variance at fixed t = t0 (with respect to true value
S(t0) = S0):

σ2 =
1

Ts

∫ Ts

0
[S0 − Sδ(t0 + δ)]2 dδ
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Interpolation “noise” simulation: a picture

Variance formula with explicit kernel dependence [Bardelli2005]:

σ2 =
1

Ts

∫ Ts

0

[
S0 −

+∞∑
n=−∞

S(kTs − δ) · g
(
t0 + δ

Ts
− n

)]2

dδ

N.B. generally, red (reconstructed) signals have different shapes!
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Sine simulation: select point as t0

Simulation for sinusoidal signal: we will study amplitude fluctuations
at fixed t0, point marked with b, also trying different kernels.

Time (samples)
0 2 4 6 8 10 12 14 16 18 20

Time (samples)
0 2 4 6 8 10 12 14 16 18 20

-1

-0.5

0

0.5

1
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Sine simulation for Ts = 10 ns: fluctuations at t0

)-1Frequency (samples
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
S

R
 (d

B
)
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0

=10 ns (MHz)clkτFrequency @ 
0 10 20 30 40 50 60 70 80 90 100

ADC 11eff.bits
ADC 12eff.bits
Linear
Cubic
Penta
WSinc6
WSinc8
Sin(x)/x

• sine is BW limited =⇒ sinc is the best kernel!

• note the reference ADC noise levels (two ADC’s, different ENOB);

• when interpolation noise<ADC noise, we can forget about it
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Preamp simulation: select point as t0

Simulation for charge preamp signal: we will study amplitude
fluctuations at fixed t0, point marked with b, also trying different
kernels.
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Preamp simulation for Ts = 10 ns: fluctuations at t0

Time constant (samples)
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• three reference noise levels (added measured noise in actual FEE);

• short rise-time =⇒ interpolation noise dominates
• > 4 samples in leading edge (> 40 ns): penta < experimental noise
• linear?...bah!...front is not linear!
• sinc? no better...why? no “beyond Nyquist” components in sinc
• cubic interpolation: good performance/complexity ratio
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End of First Lesson (2016-10-25)
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