SNRI V

Introduction to lab. 2 γ-ray spectroscopy with GALILEO

Daniele Mengoni

Dipartimento di Fisica e Astronomia "G.Galilei" Università di Padova INFN - Padova

γ-ray spectroscopy at LNL

GASP 1992

CLARA 2004

- 80\% nuclear physics research
 - 50\% γ-ray spectroscopy
 - Proton- and neutron-rich nuclei

2015-...

EUROBALL 1998

AGATA $2008 \rightarrow 2019$.

The GALILEO - phase $1 \rightarrow 2 \rightarrow 3$

Phase 1 - The present implementation

$-25 \mathrm{HPGe}+\mathrm{AC}+\mathrm{NW}$

GALILEO digital electronics

Table of contents

■ Energy calibration [133Ba, 60Co, 152Eu]

 - Relative efficiency calibration ■ $\gamma \gamma$ correlation matrix [152Eu] \square Angular correlations [60Co]
Energy Calibration

Non linearities (INL, DNL)

- Cross talk (integral and differential)

■ Gaussian Fit full energy peaks \rightarrow centroids
■ Polynomial fit of the centroids positions
■ Check residues
■...

(Some) calibration sources

Primordial radioisotopes that emit gammas

${ }^{232}$ Th series	$1.40 \times 10^{10} \mathrm{yrs}$	$\alpha, \beta^{-}, \gamma$
${ }^{238} \mathrm{U}$ series	$7.04 \times 10^{8} \mathrm{yrs}$	$\alpha, \beta^{-}, \gamma$
${ }^{235 \mathrm{U}}$ series	$4.47 \times 10^{9} \mathrm{yrs}$	$\alpha, \beta^{-}, \gamma$
${ }^{40} \mathrm{~K}$	$1.28 \times 10^{9} \mathrm{yrs}$	$\alpha, \beta^{-}, \gamma$
${ }^{138} \mathrm{La}$	$1.05 \times 10^{11} \mathrm{yrs}$	$\alpha, \beta^{-}, \gamma$
${ }^{176} \mathrm{Lu}$	$3.6 \times 10^{10} \mathrm{yrs}$	$\alpha, \beta^{-}, \gamma$

rich gamma spectrum
Rn daughters produce gammas above 200 keV
almost all gammas less than 220 keV
$511 \mathrm{keV}(11 \%), 1461 \mathrm{keV}$ (11\%)
1436 keV (70\%), 789 keV (30\%)
307 keV (100\%), 202 keV (100\%), 88 keV (100\%)

Some radioisotopes from fission events that emit gammas

54 Mn	313 days	β - γ	834.8 keV
${ }^{60} \mathrm{Co}$	5.27 yrs	β	$1332.5 \mathrm{keV}, 1173.2 \mathrm{keV}$
${ }_{95 \mathrm{Zr}}$	64.02 days	β - γ	$756.7 \mathrm{keV}, 724.2 \mathrm{keV}$
${ }^{95} \mathrm{Nb}$	34.97 days	β - γ	765.8 keV
${ }^{131}$	8.040 days	β^{-}, γ	364.5 keV
${ }^{134} \mathrm{Cs}$	2.05 yrs	β - γ	$795.8 \mathrm{keV}, 604.6 \mathrm{keV}$
${ }^{137} \mathrm{Cs}$	30.17 yrs	β - γ	661.6 keV
${ }^{133} \mathrm{Ba}$	10.53 yrs	$\beta^{-}, \gamma, \mathrm{EC}$	356 keV , 81 keV , 303 keV
${ }^{141} \mathrm{Ce}$	32.5 days	β - γ	145.4 keV
${ }^{144} \mathrm{Ce}$	284.6 days	β - γ	$133.5 \mathrm{keV}, 80.1 \mathrm{keV}$
${ }^{133} \mathrm{Ba}$	10.53 yrs	$\beta^{\beta}, \gamma, \mathrm{EC}$	356 keV , 81 keV , 303 keV
${ }^{141} \mathrm{Ce}$	32.5 days	β - γ	145.4 keV
${ }^{194} \mathrm{Ce}$	284.6 days	β - γ	133.5 keV , 80.1 keV

Time alignment

Two different dets

Same but aligned

■ Time info is fundamental: background reduction, PSA..

- Good reference time (RF, dets with good timing). It depends on the available dets \rightarrow 1ns down to 100ps
- Alignment

Efficiency: measured / produced

■ Absolute Efficiency (INTR X GEOM): The ratio of the number of counts produced by the detector to the number of gamma rays emitted by the source (in all directions).

■ Geometrical efficiency: the ration between the solid angle subtended by the source and the total solid angle

■ Intrinsic Efficiency: The ratio of the number of pulses produced by the detector to the number of gamma rays striking the detector.

■ Relative Efficiency: HPGe detectors are almost universally specified in terms of their relative full-energy peak efficiency compared to that of a $3 \mathrm{in} . \times 3 \mathrm{in}$. $\mathrm{NaI}(\mathrm{TI})$ Scintillation detector at a detector to source distance of 25 cm at 1.33 MeV..

■ Full-Energy Peak (or Photopeak) Efficiency: The efficiency for producing full-energy peak pulses only.

Efficiency: consideration

Problems

■Activity not reliable, Dead Time, Background ...

- Best way is to count the available events with an external detector in coincidence used to trigger the acquisition
■ Can use internal coincidences

Corrections:
\square Multiple decays within the event time window
■ Angular correlation between the 2γ transitions (.. ${ }^{60} \mathrm{Co}$)

Conventional technique to measure ε

1. Activity (A):

Peak integral (measured) $=\mathrm{A} \times \mathrm{BR}_{\gamma} \times \varepsilon_{\text {int }} \varepsilon_{\text {gem }}$
2. Sum spectrum (singles):
$\mathrm{R}_{1}=\mathrm{A}\left(\varepsilon_{1 \mathrm{p}} \varepsilon_{2 \mathrm{p}}\right) / \mathrm{A}\left(\varepsilon_{2 \mathrm{p}}\right)=\varepsilon_{1 \mathrm{p}} \varepsilon_{2 \mathrm{p}} / \varepsilon_{\mathrm{v} 1} \varepsilon_{2 \mathrm{p}}=\varepsilon_{1 \mathrm{p}} / \varepsilon_{\mathrm{v} 1}=\varepsilon_{1 \mathrm{p}} /\left(1-\varepsilon_{\mathrm{V} 1} / \mathrm{PT}_{1}\right)$;
$\mathrm{PT}=\varepsilon_{1 \mathrm{p}} /\left(\varepsilon_{1 \mathrm{p}}+\varepsilon_{\mathrm{B}}\right)$ is the peak/total ratio, $\varepsilon_{\mathrm{V} 1}$ is the prob not to detect anything

$$
\begin{aligned}
& \varepsilon_{1 \mathrm{p}}=\mathrm{R}_{1} /\left(1+\mathrm{R}_{1} / \mathrm{PT}_{1}\right) \\
& \varepsilon_{2 \mathrm{p}}=\mathrm{R}_{2} /\left(1+\mathrm{R}_{2} / \mathrm{PT}_{2}\right)
\end{aligned}
$$

3. Coincidences (int/ext) to count the total number of counts

Efficiency curve

CLARA γ-ray spectrometer: Measured vs simulations

Galileo γ-ray spectrometer: simulations

A common model:

$$
e f f=\exp \left(((A+B * x+C * x * x) *(-G)+(D+E * y+F * y * y) *(-G)) *\left(-\frac{1}{G}\right)\right)
$$

$$
x=\ln \left(\frac{E G}{E 1}\right) \quad \text { E1~100keV }
$$

EG: gamma-ray energy

$$
y=\ln \left(\frac{E G}{E 2}\right)
$$

E2~1000keV

ry matrices

$\left(4^{+}\right)$	2.746

■ $\gamma \gamma$ promp coincidences
■ Promp delayed possible
\rightarrow level scheme reconstruction

Angular distribution (AD)

$$
\mathrm{J}_{\mathrm{i}}=\mathbf{J}+\mathrm{J}_{\mathrm{f}}
$$

$$
\pi_{\mathrm{i}} \times \pi=\pi_{\mathrm{f}}
$$

Imagine the situation of a gamma ray that decays between two states, the initial one has a J ${ }^{\pi}$ value and the final one a J^{π}.

Excited levels seen as charge distribution that emit radiation of multipolarity 2^{λ}

Angular distribution (AD)

Intensity of the emitted photons depends on the intensity of the Poynting vector either $\sim|\mathbf{E}|^{2}$ or $\sim|\mathbf{H}|^{2}$

For a given combination of λ, μ the angular distributions are identical for \mathbf{E} or \mathbf{M} transitions. (recall properties of $X_{\lambda l m}$):

$$
Z_{\lambda \mu}(\theta, \varphi)=\left|X_{\lambda \lambda \mu}\right|^{2}
$$

1. Independent on azimuthal angle
2. Isotropic if μ takes equal weight
3. $Z_{\lambda \mu}(0)=0$
4. Symmetry with respect to π rotation

Linear polarization (P)

Polarization depends on the character of the transition

Electric field polarized in the plane of dipole emission. Similarly of the magnetic field but out of the plane

For $\theta=\pi / 2$ the polarization can be measured at best.

P, AD from oriented states

Orientation: excited states formed in nuclear reactions are in general oriented with respect to the direction of projectiles. The degree of orientation depends on the formation process.

Nuclear state: j, m: -j,..., j, P(m) [population parameter representation]

$$
a_{\lambda \mu}=\sum_{m_{i}}\left|<j_{i} m_{i} \lambda \mu\right| j_{f} m_{f}>\left.\right|^{2} P\left(m_{i}\right)
$$

γ-ray emission prob from a state with population parameter $\mathrm{P}\left(\mathrm{m}_{\mathrm{i}}\right)$
γ-ray angular distribution:
$W(\theta)=\sum_{m_{i}, \mu}\left|<j_{i} m_{i} \lambda \mu\right| j_{f} m_{f}>\left.\right|^{2} P\left(m_{i}\right) Z_{\lambda \mu}(\theta, \varphi)$

Orientation can be experimentally obtained by a reaction, a magnetic field and a low temperature, or the observation of a gamma ray

Example

$$
\begin{aligned}
& J^{\pi}=1^{+}, m=0 \text { decays to } \\
& J^{\pi}=0^{+}, m=0 \text { with a } \\
& \sin ^{2} \theta \text { distribution. }
\end{aligned}
$$

$$
\begin{aligned}
& J^{\pi}=1^{+}, m= \pm 1 \text { decays to } \\
& J^{\pi}=0^{+}, m=0 \text { with a } \\
& 1 / 2\left(1+\cos ^{2} \theta\right) \text { distribution. }
\end{aligned}
$$

So the total distribution: $1 / 2\left(1+\cos ^{2} \theta\right)+\sin ^{2} \theta+1 / 2\left(1+\cos ^{2} \theta\right)$

$$
=1+\cos ^{2} \theta+\sin ^{2} \theta
$$

=2 ...flat, no ang dependence

Example

Let's imagine we have two
γ-rays which follow immediately after each other in the level scheme.

If we measure γ_{1} or γ_{2} in singles then the distribution will be isotropic (same intensity at all angles)... there is no preferred direction of emission.

Example

Now imagine that we

 measure γ_{1} or γ_{2} in coincidence. We say that measuring the γ_{1} causes the intermediate state to be aligned. We define the z direction as the direction of γ_{1}.The angular distribution of the emission of γ_{2} then depends on the spin/parities of the states involved and on the multipolarity of the transition.

Example

$$
\begin{aligned}
& 0^{+} \longrightarrow \mathrm{J}^{\pi}=0^{+}, \mathrm{m}=0 \\
& 1^{+} \xlongequal\left[\{]{\downarrow} \gamma_{1} \quad \mathrm{~J}^{\pi}=1^{+}, \mathrm{m}, \mathrm{~m}= \pm 1\right. \\
& 0^{+} \downarrow \gamma_{2} \mathrm{~J}^{\pi}=0^{+}, \mathrm{m}=0
\end{aligned}
$$

Since γ-ray transitions have angular momentum 1, γ_{1} can only populate the $m= \pm 1$ substates of the $J^{\pi}=1^{+}$state.
Hence for γ_{2} we only see the $m= \pm 1$ to $m=0$ part of the distribution i.e we see that the intensity measured as a function of angle (w.r.t γ_{2}) follows a $1+\cos ^{2} \theta$ distribution.

AGATA modules as Compton Polarimeters

Partially-polarized 555.8-keV and 433.9-keV lines $\mathrm{n}^{104} \mathrm{Pd}$ and ${ }^{108} \mathrm{Pd}$ [+unpolarized ${ }^{137} \mathrm{Cs}$ source].

$$
\bar{\sigma}_{C}(\theta, \varphi)=\frac{r_{0}^{2}}{4}\left(\frac{E_{\gamma}^{\prime}}{E_{\gamma}}\right)^{2}\left[\frac{E_{\gamma}}{E_{\gamma}^{\prime}}+\frac{E_{\gamma}^{\prime}}{E_{\gamma}}-\sin ^{2} \theta(1+P \cos 2 \varphi)\right]
$$

GOSIA

Analyzing power: 0.48

P.G. Bizzeti et al., Eur.Phys.J. A51 (2015) no.4, 49

AD and mixing ratio, ${ }^{64} \mathrm{Ge}$ (N=Z)

Angular Distribution 1665 keV

Si trovano due minimi del χ^{2}, per $\delta=-0.089$ e per $\delta=-3.93$.
Il secodo minimo è piú profondo, ma entrambi i valori di δ sono compatibili coi risultati sperimentali.

Polarization

Dipole Polarization (spin 5 to spin 4)

Asimmetria negativa $\mathrm{A}=-0.09$ (5).
Solo la combinazione E1/M2 per $\delta=-3.9$
è compatibile con la polarizzazione lineare osservata.
La transizione $5^{-} \rightarrow 4^{+}$è quasi tutta M2
e $B(E 1)=2.47 \times 10^{-7}$ W.u.

Recap

■ Energy calibration [133Ba, 60Co, 152Eu]

 - Relative efficiency calibration ■ $\gamma \gamma$ correlation matrix [152Eu] \square Angular correlations [60Co]
Bibliography

-K.S.Krane, Chapter 10, "Introductory Nuclear Phyisics"
H.Morinaga, T.Yamazaki, Chapter 2 "In-beam gamma-ray spectroscopy"
W.D.Hamilton: Chapters 12,14 and 15 in "The electromagnetic interaction in nuclear spectroscopy"
-P.G. Bizzeti et al., Eur.Phys.J. A51 (2015) no.4, 49

Backup slides

Noise and distortion: INL \& DNL

Deviation between two analog values corresponding to adjacent input digital values.

$$
\text { DNL(i) }=\frac{V_{\text {out }}(i+1)-V_{\text {out }}(i)}{\text { ideal LSB step width }}-1
$$

Crosstalk model

AC equivalent detector

Ramo theoreme -

Extension
B. Pellegrini - Phys Rev B 34,8 (86)
p. 5921
E. Gatti et al - NIM 193 (82) p. 651

Crosstalk is intrinsic property of segmented detectors !

Crosstalk parameters from singles

Slope $=\delta^{*}$

A1 - spectrum single hits

Crosstalk parameters from doubles

Correlation matrix between each pair of segment ij

Ideal system - no cross talk

$$
\left[\begin{array}{c}
E_{\text {core }} \\
\hdashline E_{\text {seg1 } 1} \\
E_{\text {seg } 2} \\
E_{\text {seg } 3}
\end{array}\right]_{\text {meas }}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\hdashline 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
E_{\text {seg } 1} \\
E_{\text {seg } 2} \\
E_{\text {seg } 3}
\end{array}\right]_{\text {true }}
$$

Cross talk correction

Multipole expansion

Potential from a charge distribution $\varrho\left(\boldsymbol{x}^{\prime}\right)$

$$
\Phi(\boldsymbol{x})=\frac{1}{\varepsilon_{0}} \sum_{l, m} \frac{1}{2 l+1}[\underbrace{\left.\int Y_{l m}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) r^{\prime} \varrho\left(\boldsymbol{x}^{\prime}\right) d^{3} x^{\prime}\right]}]
$$

$q_{l m}$ multipole moments: q_{00}, q_{11}, q_{10} etc
Potential depends on the charge distribution

em field

The emission of a photon is equivalent to generate an em wave that respects the Maxwell equation

$$
\begin{array}{ll}
\nabla \cdot \vec{D}=\rho & \boldsymbol{E}(\boldsymbol{r}, t)=\boldsymbol{E}(\boldsymbol{r}) e^{-i \omega t}+\boldsymbol{E}^{*}(\boldsymbol{r}) e^{i \omega t}, \\
\nabla \cdot \vec{B}=0 & \boldsymbol{H}(\boldsymbol{r}, t)=\boldsymbol{H}(\boldsymbol{r}) e^{-i \omega t}+\boldsymbol{H}^{*}(\boldsymbol{r}) e^{i \omega t} . \\
\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \text { Poynting vector } \\
\nabla \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t} & \boldsymbol{P}=\left(\frac{c}{4 \pi}\right) \boldsymbol{E} \times \boldsymbol{H} .
\end{array}
$$

em field angular momentum and parity

J_{z} operator (two components), infinitesimal rotation about the z axis

$$
J_{z}=-i(\boldsymbol{r} \times \nabla)_{z}+\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \begin{aligned}
& \mathrm{S}_{\gamma}=1, \text { intrinsic spin of } \\
& \text { the photon }
\end{aligned}
$$

Angular momentum L \qquad ,

Intrinsic spin S
Parity π (opposite for M and E):

$$
\pi(\boldsymbol{E}) \times(-1)=\pi_{i} \pi_{f},
$$

dipole

$$
\pi(\boldsymbol{H})=\pi_{i} \pi_{f} .
$$

general

Electric radiation(E λ):
$\pi_{i} \pi_{\mathrm{f}}=(-)^{\lambda}$
Magnetic radiation(M λ):

$$
\pi_{i} \pi_{\mathrm{f}}=(-)^{\lambda+1}
$$

em field: intrinsic spin

$$
S=1 S_{z}=-1,0,1
$$

eigenvalues

$\mathrm{h}=+1$
$\mathrm{h}=0$, non physical
$\mathrm{h}=-1$

eigenfunctions

$$
\xi_{1}=N\left(e_{x}+i e_{y}\right)
$$

$$
\xi_{0}=e_{z}
$$

$$
\xi_{-1}=N\left(e_{x}-e_{y}\right)
$$

$$
E\left(r, t \xi_{1}\right)=\xi_{1} e^{-i w t}+\xi_{1}{ }^{*} e^{\text {iwt }} \sim e_{x} \cos (w t)+e_{y} \sin (w t): \text { elec. dip. }
$$

$\mathrm{E}\left(\mathrm{r}, \mathrm{t} ; \xi_{-1}\right) \sim$ magnetic dipole oscillation

em field: total angular momentum

$\mathbf{J}=\mathbf{L}+\mathbf{S}$, total angular momentum

eigenvalues

$$
\boldsymbol{L}^{2} Y_{l m}=l(l+1) Y_{l m},
$$

$$
L_{z} Y_{l m}=m Y_{l m}
$$

$$
J^{2} X_{\lambda l \mu}=\lambda(\lambda+1) X_{\lambda l \mu},
$$

$$
J_{z} X_{\lambda l \mu}=\mu X_{\lambda l \mu} .
$$

eigenfunctions

$$
\begin{gathered}
Y_{l m}(\theta, \varphi)=e^{i m \varphi} N_{l m} P_{l m}(\cos \theta), \\
X_{\lambda l m}=\sum_{m}<l \mu-m 1 m \mid \lambda \mu>Y_{l \mu-m} \xi_{m}
\end{gathered}
$$

θ, φ angular coordinates, in a (r, θ, φ) s.o.r. $Y_{\text {Im }}$ spherical harmonics N_{lm} normalization constants $P_{\text {Im }}$ spherical functions based on Legendre polynomials
ξ eigenfunction of intrinsic spin

em field angular momentum and parity

$$
\boldsymbol{E}_{\lambda \mu}(M \lambda)=-\boldsymbol{H}_{\lambda \mu}(E \lambda)=\boldsymbol{X}_{\lambda l \mu} .
$$

- X satisfies the transverse condition and has a (-1$)^{\lambda}$ parity - Electric field in a magnetic

Linear polarization (P)

Assume photon emitted along x (z quantization axis), $\sigma=E, M$

$$
\begin{aligned}
P_{\lambda \mu}^{\|}(\sigma \lambda) & =\frac{\left|\boldsymbol{e}_{z} \cdot \boldsymbol{E}_{\mu}(\sigma \lambda)\right|^{2}}{\left|\boldsymbol{E}_{\lambda \mu}(\sigma \lambda)\right|^{2}}=\frac{\left|\boldsymbol{e}_{v} \cdot \underline{\boldsymbol{H}}_{\lambda \mu}(\sigma \lambda)\right|^{2}}{\left|\boldsymbol{H}_{\lambda \mu}(\sigma \lambda)\right|^{2}} \\
P_{\lambda \mu}^{\perp}(\sigma \lambda) & =\frac{\left|\boldsymbol{e}_{y} \cdot \boldsymbol{E}_{\lambda \mu}(\sigma \lambda)\right|^{2}}{\left|\boldsymbol{E}_{\lambda \mu}(\sigma \lambda)\right|^{2}}=\frac{\left|\boldsymbol{e}_{z} \cdot \boldsymbol{H}_{\lambda \mu}(\sigma \lambda)\right|^{2}}{\left|\boldsymbol{H}_{\lambda \mu}(\sigma \lambda)\right|^{2}}
\end{aligned}
$$

Properties: $\quad P_{\lambda \mu}^{\|}(\sigma \lambda)+P_{\lambda \mu}^{\perp}(\sigma \lambda)=1$.

$$
P_{\lambda \mu}^{\|}(E \lambda)=P_{\lambda \mu}^{\perp}(M \lambda)=1-P_{\lambda \mu}^{\|}(M \lambda),
$$

eg dipole:

$$
\begin{aligned}
P_{10}^{\|}(M 1) & =P_{11}^{\|}(E 1)=0, \\
P_{10}^{\|}(E 1) & =P_{11}^{\|}(M 1)=1 .
\end{aligned}
$$

In general , if many μ components are present, the polarization is the weighted sum over each $\mathrm{P}_{\lambda \mu}$

P, AD from oriented states

γ multipolarity: $\left|j_{\mathrm{i}} \mathrm{j}_{\mathrm{f}}\right|<\mathrm{j}<\left|\mathrm{j}_{\mathrm{i}}+\mathrm{j}_{\mathrm{f}}\right| \quad$ [Statistical tensor representation]
statistical tensor account for a different population:

$$
\rho_{k}(j)=\sqrt{2 j+1} \sum_{m}(-)^{j-m}<j m j-m \mid k 0>P(m)
$$

γ-ray angular distribution:

$$
W(\theta)=\sum_{k} A_{k}\left(j_{i} \lambda \lambda^{\prime} j_{f}\right) P_{k}(\cos \theta)
$$

A_{k} depends on the statistical tensor and the mixing ratio δ, P_{k} Legendre polynomials
Mixing ratio:

$$
\delta=\frac{\left\langle j_{f}\left\|\lambda^{\prime}\right\| j_{i}\right\rangle}{\left\langle j_{f}\|\lambda\| j_{i}\right\rangle}
$$

Ratio between the transition matrix element for two multipolaries

While a an orientation of states ji is represented by $2 \mathrm{ji}+1$ population parameters, only few ρ_{k} suffice to determine the $A D$

Angular correlation

γ cascade of 2 transitions, first randomly oriented

statistical tensor account for a different population:

$$
\rho_{k}(j)=\sqrt{2 j+1} \sum_{m}(-)^{j-m}<j m j-m \mid k 0>P(m)
$$

γ-ray angular distribution:

$$
W(\theta)=\sum_{k} A_{k}\left(j_{i} \lambda \lambda^{\prime} j_{f}\right) P_{k}(\cos \theta)
$$

A_{k} depends on the statistical tensor and the mixing ratio $\delta, \mathrm{P}_{\mathrm{k}}$ Legendre polynomials
Mixing ratio:

$$
\delta=\frac{\left\langle j_{f}\left\|\lambda^{\prime}\right\| j_{i}\right\rangle}{\left\langle j_{f}\|\lambda\| j_{i}\right\rangle}
$$

Ratio between the transition matrix element for two multipolaries

While a an orientation of states ji is represented by $2 \mathrm{ji}+1$ population parameters, only few ρ_{k} suffice to determine the AD

Linear polarization from oriented states

γ with fixed σ, λ, μ observed at $\theta: \pi / 2$ with respect to the orientation axis

$$
P^{\|}(\sigma \lambda)=N \sum_{\mu} a_{\lambda \mu} Z_{\lambda \mu}\left(\frac{\pi}{2}\right) \underbrace{P_{A \mu}^{P_{\lambda, I}^{\|}(\sigma \lambda)}}_{\text {Emission prob }}
$$

For γ-ray angular distribution:

$$
\sum_{k} A_{k} P_{k}(\cos \theta)=\sum_{\mu} a_{\lambda \mu} Z_{\lambda \mu}(\theta)
$$

$a_{\lambda, \mu}$ can be expressed in terms of A_{k}. From where we can get the ratio between the parallel and orthogonal pol. Vectors. For $\lambda=1$:

$$
\frac{P^{\|}(E 1)}{P^{\perp}(E 1)}=\frac{P^{\perp}(M 1)}{P^{\|}(M 1)}=\frac{1+A_{2}}{1-2 A_{2}}
$$

$$
\begin{aligned}
& \text { AD+POLARIZATION } \rightarrow \text { UNIQUE } \\
& \text { DETERMINATION OF SPIN, } \\
& \text { PARITIES, MULTIPOLARITIES }
\end{aligned}
$$

Experimentally the linear polarization are measured in the terms of Compton scattering, with a polarimeter of polarization sensitivity $\left(\mathrm{N}^{\| /} / \mathrm{N}^{\perp}\right)$

