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Growth Methods:

PVT - Bulk (thick, high doping)
CVD - Epitaxy (thin film, mid-low doping)
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Table 3.1 Major extended defects observed in SiC boules and wafers. The Burgers vector, major b u I K I ’ eTe CIS

direction, and typical density of the extended defects in boules (wafers) prepared using state-of-art

technology (for n-type 4H-SiC) are shown. -
Dislocation Burgers vector Major direction Typical density (cm™2)
Micropipe n<0001>(n> 2) <0001> 0-0.1

dislocation (TED)
(Perfect) Basal plane <1120>/3 in {0001} plane 500-3000
dislocation (BPD) (preferably <1120>)

Threading screw n<0001>(n=1.2) <0001> 300-600
dislocation (TSD)
Threading edge <1120>/3 <0001> 2000-5000
Micropipe defects are indeed located at the center of a
large spiral on the surface of the SiC boule, and

Z range:
10 nm
the diameters of the pinholes range from 0.5 pm to - .|

several micrometers 50 ym 10 ym
(a) (b)

Figure 3.14 Micropipe in a 4H-SiC(0001) wafer, as observed by (a) optical microscopy and (b) atom
force microscopy. (By courtesy of D. Nakamura and T. Mitsuoka, Toyota Central R&D Laboratories.)
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Figure 3.15  Schematic illustration of an elementary threading screw dislocation in SiC. Figure 3.18 (a) Schematic illustration of an extra (or missing) half plane introduced into a SiC crystal.
(b) Typical configuration of threading edge and basal plane dislocations, where the basal plane dislocation

lies along a <1120> direction.
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Polytype mixing during boule growth =2 switching, coalescence, nucleation =2

Occurrence of spiral growth around TSD that is generated to remedy to

mismatch of polytype
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Figure 3.11 Empirical observations of relative stability (or occurrence) of individual polytypes in SiC
bulk growth [3].
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Z range:
10 nm

Figure 3.12 Typical surface morphologies of a 6H-SiC boule taken with (a) an optical microscope and
(b) an atomic force microscope. (By courtesy of D. Nakamura and T. Mitsuoka, Toyota Central R&D
Laboratories.).
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3.2 Polytype Control in Sublimation Growth

For SiC wafers to be used in electronic applications, it is mandatory to grow a large SiC boule of a
desired single polytype. Because of the low stacking fault energy of SiC, however, polytype mixing
may happen during boule growth, when the growth conditions are not optimized. Knippenberg reported
empirical observations of the relative stability (or occurrence) of individual polytypes in SiC bulk growth,
as shown in Figure 3.11 [3]. According to this report, 3C-SiC is a metastable polytype, and 2H-SiC is
believed to occur at relatively low temperatures, 1300-1600 °C. At high temperatures, above 2000 °C, at
which sublimation growth is carried out, 6H-, 4H-, and 15R-SiC polytypes are often observed. However,
from a materials science viewpoint, the kinetic and thermodynamic factors which determine the polytype
actually grown are not well understood. Because SiC{0001} is usually employed as the seed crystal,
polytype switching, or nucleation of foreign polytypes may occur during growth, unless intentionally
controlled.

One obvious kinetic factor is the polytype replication through spiral growth around threading screw
dislocations, after stable spiral growth has been established in the bulk. Figure 3.12 shows typical surface
morphologies of a 6H-SiC boule taken with (a) an optical microscope and (b) an atomic force microscope.

These images indicate that spiral growth, via steps with a six-bilayer height, is dominant on the growing
surface (in 6H-SiC growth). Along the step edges, the stacking information is provided, which ensures
replication of that polytype in the growing crystal. Because the core of a threading screw dislocation acts
as an infinite step source, this spiral growth is maintained throughout the growth, as long as the optimized
growth conditions are maintained. In this sense, polytype replication via a spiral growth mechanism will
become much more difficult in the future, when the threading screw dislocations in SiC boules are almost
eliminated. Polytype replication by step-flow growth is described in greater detail in Chapter 4.

Although spiral growth is favorable for polytype replication, nucleation on the terraces (flat regions
between steps) can naturally take place in the initial stages of growth as well as during growth. There-
fore, it is essential to understand and to control the key factors which stabilize a desired polytype.

> (C/Si Ratio
> Polarity (Si or C face)

> Hexagonality of the polytype
- 4H-SiC (0.5 Hex), more stable in C-rich ambient
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casily introduced into the growing boule when the resolved shear stress exceeds a certain (critical) value.
A major source of the stress is thermal stress, which develops during sublimation growth when the tem-
perature profile is not appropriate. Both radial and axial temperature gradients cause inhomogeneous

A dOplng variation affects the BPD thermal expansion inside the boule. Furthermore, the difference in the thermal expansion coefficients of

. . the SiC and graphite parts causes severe thermal stress during cooling. Figure 3.19 shows a schematic
generatlon due to the lattice illustration of the shear stress, the associated dislocations, and the bending of a basal plane in a growing
< e SiC boule, taking into account typical radial and axial temperature gradients [69]. The temperature is

p arameters variation. higher along the periphery of the boule than in the center because of radiation from the crucible walls.

The temperature of the growing surface is higher than the seed temperature because of the temperature
gradient designed to promote mass transport from the source to the seed. Under these circumstances,
thermal expansion is not uniform inside the boule; this causes significant thermal stress and bending of
basal planes.| Consider the components of stress inside a boule grown along <0001> (Figure 3.20). The

A stress reduction COUld resolved shear stress (o) along <1 120> inside a basal plane is expressed by [58]:
reduce the BPD generation Orz = (0, + 0,,) COs =0y, sin G.11)

where o, o, and o, are the components of shear stress, as shown in Figure 3.20 [20]. The resolved
shear stress is a direct cause of dislocation nucleation, while too high a value of o, can also lead to
cracking of SiC boules.

Figure 3.21 shows the critical stress in 6H-SiC as a function of temperature [70]. One has to con-

M t TED f d b sider two different critical stresses, (i) the critical shear stress resolved to a basal plane, which induces
asal plane stip and (11) the critical normal stress, which induces prism plane stip. In 51C, the critica

oS s are formed by basal plane slip and i) the critical normal bich teehioes priem plane sl In SIC, the cxifica
conversion from BPDs shear stress along a basal plane is much smaller, and the value decreases greatly at high temperature.

Therefore, at the temperature of sublimation growth (over 2200 °C), the critical shear stress becomes

along the growth
direction during growth.
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‘—' Figure 3.19 Schematic illustration of the shear stress, the associated dislocations, and the bending of
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TSD generation and removal

Threading screw dislocations are basically replicated from a seed crystal, as also occurs for micropi;
A major cause of threading-screw-dislocation nucleation in SiC sublimation growth is the generatio
a half loop at the initial stage of bulk growth, as shown in Figure 3.16. It is reported that the nun
of TSDs with a Burgers vector of +1¢ is almost the same as that with —I¢, and that +1¢ and —Ic¢
locations are often observed nearby as if they are a pair [64]. At the very initial stage of growth, st:
spiral growth or layer-by-layer growth is not well established. When the growth conditions (e.g., ef
tive C/Si ratio, temperature profile, and other factors) deviate from the optimum conditions, nuclea
of foreign polytypes may occur at a microscopic scale. In this case, TSDs can be generated becaus
stacking mismatch (e.g., between a 4H-SiC host and a small 6H-SiC island), although the microsce
islands will eventually be overgrown [65]. In a similar manner, when a surface precipitate is overgro
the growth fronts meet at the precipitate and coalesce with misalignment under the influence of str
To accommodate this misalignment, a pair of screw dislocations of opposite signs is generated [65,
The surface quality of the seed is also important. Polishing-induced damage and surface graphitiza
during temperature ramping should be completely eliminated. Furthermore, micropipe dissociation
i rowth is another source of TSDs, as described above.
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_ Figure 5.19 Cross-sections near the etch pits which were formed on off-axis SiC(0001), where
— [1120] step-flow direction lines for the TSD, TED, and BPD are indicated by broken lines.

Figure 5.18  Off-axis 4H-SiC(0001) surface after etching in molten KOH at 500 °C for 10 min.
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Figure 3.23 (a—d) Schematic illustration of the repeated a-face process in SiC boule growth.
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Figure 3.24 Total density of dislocations as a function of the number of a-face (or m-face) growth
steps [78].
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epitaxial
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Figure 4.25 Schematic illustration of dislocation replication and conversion typically observed in
4H-SiC epitaxial layers grown on off-axis {0001} by CVD.

Defects g

Figure 4.23 Surface morphology of a 4H-SiC epitaxial layer observed by scanning electron
microscopy (SEM) ([105] reproduced with permission from The Electrochemical Society (ECS)). The
image is taken with low acceleration voltage SEM to enhance the resolution.
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oure 4.20 Typical surface defects observed in 4H- and 6H-SiC{0001 } homoepitaxial layers: (a) “car-
** defect and shallow pit, (b) triangular defect, and (c) down-fall.
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Dislocations Vs Epi defects m
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Epi defect: Step bu
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Spatialily resoived miCro-pnotoiuminescence and
micro-Raman setup

PL or Raman signals

*Confocal apparatus
I | *Grating monochromator

325 nm UV laser
633 nm Vis laser

*XY motorized stage

Objective

N

*CCD detector

XY motorized stage i}
PL or Raman map

Evaluations of:

- Crystallographic defect (PL and Raman)
- Doping (PL and Raman)

- Stress (Raman)

- Polytype inclusion (PL and Raman)
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u-PCD and DLTS methods m
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Figure 5.13  Schematic illustration of a differential p-PCD measurement set-up. semiconductor (Schottky structure), along with the energy band diagrams, which correspond to (a) the
steady state under a reverse bias voltage, (b) during application of a pulse voltage, and (c) after application

of the pulse voltage, respectively.
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Defects from implantation
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Implantation process produces a damage on
the lattice crystal. By performing an annealing
at high temperature (T > 1600 °C) the crystal
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observed by PL characterization.
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EPI 4H-SiC defects (Candela CS920 Images)
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> Continuous quality improvement C on CI USIONS m

> Wide choice in characterization techniques
> Different quality from different vendors

> Non destructive VS destructive characterization methods (dislocation density)

BPDs (black)

Non destructive (PL) [l ebestructive (KOH etch)
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