SiC devices for applied physics

Mara Bruzzi Università di Firenze

Outline

- Motivations
- Experiments Collaborations on the development of Si detectors
- Development of SiC devices as real-time dosimeters;
- Alternative strategies (epi Si Diamond)
- Application of SiC detectors for solar UV monitoring
- Conclusions

Motivation SiC a material btw Si and Diamond

SiC, as all undoped high band gap crystalline materials, is intrinsically radiation hard because even at high fluences of the leakage current is $< 1pA/cm^2$

Experiments – Collaborations on SiC devices

EPICS sviluppo di rivelatori EPItassiali di Carburo di Silicio INFN CSN5 (00-02) INFN Firenze, Politecnico di Milano, Modena-Bologna.

CONRAD INFN CSN5 (03-05) development of dosimeters con CONformed RADiotherapy: Firenze, Laboratori Nazionali del Sud e di Legnaro, Istituto Superiore di Sanità di Roma.

CERN RD50 Collaboration (02-06) Development of ultra radiation hard detectors for HL-LHC: Firenze, Modena-Bologna, Vilnius, Perugia.

Collaboration with **Fondazione Osservatorio Ximeniano** (08-10) Development of SiC devices for solar UV monitoring.

Memorandum of understanding signed (14-16) for common research on the development of medical sensors and nanotechnology btw Dipartimento di Fisica e Astronomia, Università di Firenze - Korea Electrotechnology Research Instititute (KERI). Application for **significant bilateral projects** MAE (2015) - A Feasibility Study for Application of SiC Semiconductor to Medical Dosimetry System. Applicants: Dipartimento di Fisica e Astronomia, Università di Firenze and Korea Electrotechnology Research Instititute (KERI).

INFN CSN5: EPICS (00-02) & SICPOS

Epitaxial SiC Schottky Barriers

M. Bruzzi et al. Recent results on radiation and particle detection with epitaxial SiC Schottky diodes, NSS-MIC Symposium, Norfolk, Virginia, Nov. 10-16, 2002

Ohmic Contact ➡ Ti/Au thin films Schottky Contact ➡ Au (1000Å) Ø 2mm produced by: C.Lanzieri, Alenia Systems, Roma, Italy

Capacitance - Voltage Characteristics

Good Uniformity up to 100V. Saturation @ 400V Active Thickness ~ 20mm

M. Bruzzi et al. Recent results on radiation and particle detection with epitaxial SiC Schottky diodes, NSS-MIC Symposium, Norfolk, Virginia, Nov. 10-16, 2002

Modern radiotherapy techniques : dose-delivery conformal to tumors to spare healthy tissues

✓ Intensity Modulated RadioTherapy – IMRT

✓ Volumetric Modulated Arc Theraphy - VMAT

 \rightarrow high spatial gradients, strong variations in space and time of dose rate and energy spectrum.

Requirement: Tissue equivalent bidimensional dosimeter for pre-treatment verifications

Multi Leaf Collimator (MLC) mounted on the linear accelerator head

IMRT: Step and shoot modality

Intensity modulation is obtained thanks to MLC, variable dose rate and variable rotation velocity of gantry

Gantry moving continuously without dead times due to repositioning

VMAT / IMRT comparable in terms of target covering and sparing of healthy tissues ;

VMAT reduced treatment time (10-15 times)

*Cedric X Yu , Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy , Physics in Medicine and Biology 40, 1435-1449, 1995.

SiC as a real time clinical dosimeters

\odot	Low Leakage Current		
	Working without applying bias	materiale	Z
	Very low active volume	aria	7.78
X	Fast Response	acqua	7.51
	Lich rediction register of 9	muscolo	7.64
	High faulation resistance ?	grasso	6.46
	Non tissue-equivalent*, but better than Si	ossa	12.31
	$Z_{SiC} \sim 10 < Z_{Si}$	carbonio	6
	High production costs	silicio	14
		SiC	X 10

example of an I-V characteristics of a Si dosimeter in dark and under irradiation with a 1.5Gy/min dose-rate

13

Detector Characterization

Radiotherapy Unit-University of Florence

- 1. 4-22MeV electrons from linear accelerator dose: 1-10Gy
- 2. 6MV photons from linear accelerator dose: 1-10Gy dose-rate 2-10Gy/min
- 3. ★ Co⁶⁰ source dose: 0.1-1Gy dose-rate 0.1-0.3Gy/min

Radiation Facilities

Radiation Hardness

•CNR Bologna

- 8.2MeV electrons linear accelerator dose: 2-40MRad
- 🗶 Co⁶⁰ source dose: 2-40MRad

Dip. di Fisiopatologia Clinica -Firenze

• X Cs¹³⁷ source dose: 0.1-1kGy dose-rate: 200 Gy/h

CERN Geneve

+ 24GeV/c protons fluence up to 10^{14} cm⁻²

4. Dosimetric Characterisation

source-surface distance: 70-100 cm Radiation field : 20x20 cm²

> SiC embedded in tissue _____ equivalent to eliminate the contribution of air to the signal

Dosimetric Characterisation

IV characteristics during irradiation with Co⁶⁰

Sensitivity as a function of V_{rev}

Device	bias [V]	V o 1 . [mm ³]	S [nC/Gy]	S per unit volume [nC/
Standard Farmer I o n i s a t i o n chamber	300	600	21.5	(Gy·mm ³)] 0.036
Miniature Farmer I o n i s a t i o n chamber	300	50	1.38	0.028
Scanditronix GR-p BS Silicon	0	0.295	140	474
Scanditronix SFD stereotactic Silicon	0	0.017	6	353
Epitaxial SiC diode	0	0.0415	14.1	340

Comparison between Epitaxial SiC and standard dosimeters

Dosimetry: Sensitivity vs. Accumulated Dose after irradiation with Cs¹³⁷

Thick Si dosimeter - sensitivity dependence on accumulated dose

Grusell and Rikner , 1984, Acta Radiologica Oncology 23, 465-469. Rikner G. et al., 1983, Nucl. Instr. and Meth. A, 217, 501-5.

Since S is proportional to $N_t^{-1/2}$, irradiation reduce the slope of sensitivity vs dose curve.

Overcoming thick Si limitations with epitaxial Si

Research carried out by University of Florence in the framework of European Integrated Project MAESTRO (2004-2009) with the support of IBA dosimetry (from 2009). Active region limited in any direction to a value shorter than L_e at highest dose of interest. Epi layer used to limit active depth, a guard-ring to limit active area.

M. Bruzzi et al., "Epitaxial silicon devices for dosimetry applications," Appl. Phys. Lett., vol. 90 (2007) 172109 1-3.

Si bidimensional dosimeter

In the framework of the MAESTRO EU Integrated project the Florence group designed and manufactured a high performance cost-effective device based on epitaxial p-type silicon (radiation-hard, no dependence on the accumualted dose), designed to get a high resolution matrix of macropixels (2x2mm²). Module:6.3x6.3cm2, 441ch.

C.Talamonti, M.Bruzzi et al. 2011 Nucl. Instr. Meth A, vol. 658, p. 84-89.

Measured time structure of dose segments

Large area IMRT covered by mosaic composition and/or shifting modules along x-y axes.

Dose map of an IMRT field for prostate cancer as measured by the Epi-Si 2D silicon dosimeter.

Patent : US2010176302 (A1) - 2010-07-15

M. Bruzzi N19-3 Instrumentation for BioMedical Research IEEE/NSS/MIC - Seoul Oct 30 2013

24

Diamond Dosimeters

it is almost water equivalent \bigcirc it doesn't perturb the radiation field \rightarrow small fields the energy is absorbed as in the water \rightarrow no correction factors **high radiation hardness** \rightarrow long term stability ligh density \rightarrow high sensitivity \rightarrow small dimensions non toxic **Polycrystalline CVD diamond** Natural diamond ability to produce large (area wafers of 3-5" very high production Single crystal CVD costs, difficult to select zero/low voltage to reduce (Chemically Vapour stones with proper polarization effects* **Deposited) diamond** dosimetric response 🛛 💥 *M. Bruzzi et al., Diamond & Related Materials 20 grown on HPHT (2011) 84-92 diamond, not available in Ж Diapix Experiment CNS5 10-13 large areas

Device manufacturing

- Material

Premium Detector Grade polycrystalline diamond pCVD
Element Six, UK 300mm thick;
Two prototypes: 2.5x2.5cm², 5.0x2.5cm² active area
Contacts

produced by the University of Florence as Schottky barriers;
12 x 12 matrix, pixel size: 1.8x1.8 mm²

-Electronics

electronics read out applied with four 64 channels 20 bit current-input analog to digital converter chips
custom printed circuit board designed and manufactured;
Electronic read-out and software developed starting from an evaluation kit

IRPT MIUR WP8 (14-16)

5.0x2.5cm² active area prototype under development now

2.5x2.5cm² active area prototype with evaluation kit – ready for test

Performance under conventional radiotherapy beam

Charge response in a conventional 10MV X beam ($V_{app} = 1V$) Dose-rate 1.73Gy/min

IRPT MIUR WP8 (14-16)

 $S=dQ/dD \sim 20nC/Gy$

 $s=dQ/dD \ 1/A \sim 6nC/Gy mm^{2}$

✓ negligible dark current → high S/N
 ✓ negligible polarization effects → stable response , fast dynamics

M. Bruzzi, International Conference on Diamond and Carbon Materials, Bad Homburg, Germany, 8 September 2015

IMRT map 14x10cm² measured with a diamond dosimeter 2.5x2.5cm², 144 pixels

(GT = gantry target direction; LL = lateral-lateral direction) Grid spacing 3 mm.

IRPT MIUR WP8 (14-16)

VMAT Experimental Test

- lung cancer treatment
- 2 polycrystalline diamond dosimeters
- Active area: 5.0x2.5cm²
- moved ±2.0cm in the y-direction to cover field

M. Bruzzi, International Conference on Diamond and Carbon Materials, Bad Homburg, Germany, 8 September 2015

M. Bruzzi, International Conference on Diamond and Carbon Materials, Bad Homburg, Germany, 8 September 2015

SiC devices for UV light measurements in environmental monitoring

3 Commercial SiC photodiodes JIC137A, JIC167B, JEC-1 I-DE designed by Institut für Fügetechnik und Werkstoffprüfung (IFW, Jena) and produced by Electro Optical Components, Inc. (Santa Rosa, U.S.A.) mounted in hermetically sealed TO-5 package with UV-glass windows.

JIC137A, JIC167B equipped with filters to cover respectively the ranges UVA and UVB JECF 1 I-DE produced by Boston Electronics Corporation, MA-USA equipped with a specific filter to obtain a spectral response to measure directly the UV index

Sensor	λ peak (nm)	Area (mm²)	Nominal max resp. (mV/nW)	λ_{\max} (nm)	λ _{min} (nm)
JIC137A	340	0.22	0.3	400	315
JIC167B	305	0.965	0.4	315	280
JECF 1 I-DE	285	1	2.1	400	250

Temperature coefficient < 0.06%/K

E. Borchi, R. Macii, M. Bruzzi, M. Scaringella, Nuclear Instruments and Methods in Physics Research A 658 (2011) 121–124

Good radiation resistance as UV photodetector, extremely stable for long periods of time even when exposed to high doses of UV radiation of up to $100W/m^2$

(a) Relative responsivities of the SiC photodiodes JIC137A-JIC167B as compared to the AM0 and AM1.5 Solar irradiance spectrum [10]; (b) JECF 1 I-DE responsivity as compared to the ideal erythemal spectrum and AM1.5 Solar spectrum [11].

(b) JECF 1 I-DE responsivity as compared to the ideal erythemal spectrum and AM1.5 solar spectrum

E. Borchi, R. Macii, M. bruzzi, M. Scaringella, Nuclear Instruments and Methods in Physics Research A 658 (2011) 121–124

Integral irradiance (UVA and UVB signals) vs GMT measured with the JIC137A and JIC137B SiC photodiodes mounted on a Sun tracker near Florence, Italy.

Evaluation of the total atmospheric optical thickness t:

 $I = I_0 \exp(-tAM)$

I measured radiation intensity at ground level, I_0 intensity of radiation before entering the atmosphere, AM = Air Mass.

E. Borchi, R. Macii, M. bruzzi, M. Scaringella, Nuclear Instruments and Methods in Physics Research A 658 (2011) 121–124

UV index monitoring with the JECF 1 I-DE SiC device

UV index measured by the JECF 1 I-DE with the on August 1-17 2010 in Ponte Buggianese, Tuscany as compared with values from DWD (Deutscher Wetterdienst, German Meteorological Service, Human Biometeorology, Stefan-Meier-Freiburg, Germany http://orias.dwd.de/promote/data/www UV forecast.pdf)

E. Borchi, R. Macii, M. Bruzzi, M. Scaringella, Nuclear Instruments and Methods in Physics Research A 658 (2011) 121-124

Publications

[1] E. Borchi et al, Monitoring solar ultraviolet radiation with silicon carbide photo-detectors Fondazione Ronchi, ATTI DELLA "FONDAZIONE GIORGIO RONCHI" ANNO LXVII, Geophysics, (2012)

[2] E. Borchi et al., Characterisation of SiC photo-detectors for solar UV radiation monitoring NIM A (2011)

[3] Menichelli D. et al. Characterization of energy levels related to impurities in epitaxial 4H-SiC ion implanted p(+)n junctions DIAMOND AND RELATED MATERIALS 16 1 6-11 DOI: 10.1016/j.diamond.2006.03.008 (2007)

[4] F. Moscatelli et al. Radiation hardness after very high neutron irradiation of minimum ionizing particle detectors based on 4H-SiC p⁺n junctions IEEE TNS 53, 3 1557-1563 (2006)

[5] F. Moscatelli et al. Minimum ionizing particle detector based on p(+)n junction SiC diode, MATERIALS SCIENCE FORUM 527-529, 1469-1472 (2006)

[6] F. Moscatelli et al., Measurements and simulations of charge collection efficiency of p(+)/n junction SiC detectors, NIM A 546, 1-2, 218-221 (2005)

[7] R. Schifano et al., Electrical and optical characterization of 4H-SiC diodes for particle detection JOURNAL OF APPLIED PHYSICS 97, 10, 103539 (2005)

[8] Moscatelli F et al., Measurements of charge collection efficiency of p(+)/n junction SiC detectors, MATERIALS SCIENCE FORUM 483 1021-1024 (2005)

[9] Nava F; Vanni P; Bruzzi M; et al., Minimum ionizing and alpha particles detectors based on epitaxial semiconductor silicon carbide IEEE TNS, 51, 1 (2004)

[10] Bruzzi M et al., Characterisation of epitaxial SiC Schottky barriers as particle detectors, DIAMOND AND RELATED MATERIALS 12, 3-7, 1205-1208 Article Number: PII S0925-9635(02)00350-3 (2003)

[11] Pini S et al., High-bandgap semiconductor dosimeters for radiotherapy applications, NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A 514, 1-3, 135-140 (2003)

[12] Bruzzi M et al. Recent results on particle detection with epitaxial SiC Schottky diodes IEEE NUCLEAR SCIENCE SYMPOSIUM - CONFERENCE RECORD 14-17 (2003)

[13] Bruzzi M et al. Advanced materials in radiation dosimetry, NIM A 485, 1-2, 172-177, PII S0168-9002(02)00550-8 (2002)

[14] Lazanu S et al. Theoretical calculations of the primary defects induced by pions and protons in SiC, NIM A 485 3 768-773 Article Number: PII S0168-9002(01)02147-7 (2002)

[15] Bruzzi M et al., High quality SiC applications in radiation dosimetry, APPLIED SURFACE SCIENCE Volume: 184 Issue: 1-4 Pages: 425-430 (2001)

[16] Bruzzi M et al., Characterisation of silicon carbide detectors response to electron and photon irradiation, DIAMOND AND RELATED MATERIALS 10 3-7 657-661 (2001)

[17] Bruzzi M; Lanzieri C; Nava F; et al. Characterisation of silicon carbide detectors and dosimeters HARD X-RAY GAMMA-RAY AND NEUTRON DETECTOR PHYSICS II Book Series: PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE) Vol 4141 48-54 DOI: 10.1117/12.407603 (2000)

Conclusions

- In modern radiotherapy, there is a need to developing optimised dosimeters for pre-treatment verifications. Schottky barriers on epitaxial SiC proved to have good performances as real-time dosimeter in conventional radiotherapy beams, nonethelss, a decrease of the sensitivity with the accumulated dose was observed.
- Best solutions as dosimeters for pretreatment verifications are up to now coming from systems made of segmented epitaxial Si junctions and Schottky barriers on single crystal and polycrystalline diamond films.
- However, Si is non-tissue equivalent, single crystal diamond is limited by a small area and in general diamond is a high-cost material. So, SiC could be considered as a an efficient solution in modern radiotherapy dosimetric systems, as a good compromise between Si and diamond devices.
- SiC devices can be viable solutions in other applications, especially when working in harsh environments (SiC is already extensively used for solar UV monitoring - UV index). It could find application as a sensor in Wireless Sensor Networks (WSN) to increase the ubiquity of the Internet (Internet of Things INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS Int. J. Commun. Syst. 2012; 25:1101–1102)