Ion Irradiation of Silicon Carbide Schottky diodes

L.Calcagno

F. La Via, G.Litrico, P.Musumeci, M.Mauceri

Physics Department, University of Catania, Catania, Italy Istitute of Microelectonics and Microsystems (IMM)-CNR, Catania, Italy Epitaxial Technology Centre

Physics Department – Catania IMM-CNR Epitaxial Technology Centre (ETC - company)

Summary

- Realization of SiC Schottky diodes
- SiC diodes for MeV ion detection
- Effects of ion irradiation on SiC diodes Low dose regime High dose regime
- SiC detector radiation hardness
- Conclusions

Physical Properties

PROPERTY	Si	SiC	Diamond
Band Gap (eV)	1.12	3.3	5.5
Electron/hole mobility (@R.T.)	1350/480	800/115	1800/1200
Max electric field (10 ⁶ V/cm)	0.3	4	10
Saturation drift velocity of electrons (10 ⁷ cm/s)	0.8	2.0	2.2
Average energy for e-h pair (eV)	3.62	7.8	13-17
Thermal conductivity (W/cm K)	1.5	4.9	20
Relative dielectric constant	11.9	9.7	5.7
Atomic displacement energy (eV)	13	40	45

Wide Band Gap

High Saturation Velocity High Thermal Conductivity

High Critical Field

High Displacement Energy

High Temperature Operation -Low leakage devices

- High frequency/speed devices
- High Power devices
- High Voltage devices

High resistance to radiation damage

Diode Realization

Main processes

1) Epilayer growth

- Thick (high energy radiation)
- Low doped (high depletion layer with low voltage)
- Defect free (no carrier trapping)

2) Contact formation:

- Schottky Ni (200 nm) + 950 °C
- Ohmic contact Ni (200 nm)

Growth of SiC epilayer

Characterisation techniques

- LTPL (low temperature pholuminescence)
- DLTS (deep level transient scpectroscopy)
- -TEM (transmission electron microscopy)
- Optical microscopy

Gas Precusors:

silane (SiH ₄) +ethylene (C ₂ H ₄)					
	"	"	+ HCl		
Si/H ₂	<u>ratio</u> :	0.02%	0.02% - 0.6%		
C/Si r	<u>atio</u> :	3 – 0.5	i		
Temperature: 1550 – 1650 °C					
Optimisation of growth					
	Optimisation of growth parameters				

Optimization of growth parameters

Growth rate and Morphology

La Via et al. Chemical Vapor Deposition 12(2006) 509

Diode electrical characterisation

Different dopant concentration High uniformity

SiC – Schottky diodes detectors

Linearity and resolution

M.De Napoli Nuc.Instr.Meth. A 600 (2009) 618

Energy loss in the Ni₂Si layer (200 nm)

H⁺ E > 40 KeV

C⁺ E> 100 KeV

Low energy detection -thin silicide layer -Interdigitated diodes

Effects of ion irradiation

Ion irradiation produces defects in the crystal lattice of the semiconductor

Point defects (vacancies, interstitial, antisites, etc...) Extended defects (dislocations, clusters, etc...)

The defects produce some levels in the band-gap, which deteriorate the device performances

Defect Analysis

Deep Levels Transient Spectroscopy

 $\begin{array}{ll} Z_{1/}Z_2 & (0.68 \ \text{eV}) & V_{\text{Si}}, \ \text{Si}_{\text{C}}, \ \text{C}_{\text{Si}} \ (\text{antisites}), \ \dots \\ \text{RD}_{1/2} & (0.98 \ \text{eV}) & V_{\text{C}} + V_{\text{Si}}, \ \dots \\ \text{RD}_{4} & (1.4 \ \text{eV}) & V_{\text{C}}, \ \dots \end{array}$

Efficiency of point defects production

S_n= energy deposited in elastic collisions

Ion track effect

Low fluence: $10^9 - 10^{11}$ ions/cm² point defects High dose : $10^{12} - 10^{14}$ ions/cm² complex defects \longrightarrow increase of leakage current

> G. Litrico et al. Mater. Sci. For. Vols. 615-617, (2009), pp. 397-400

Effect on I-V (reverse)

I-V forward characteristics

7 MeV C⁺

The decrease of forward saturation current is related to the increase of epitaxial layer resistance

$$R_{epi} = \frac{w}{q \cdot N_d \cdot \mu \cdot A}$$

Decrease of dopant concentration (N_d)

The effect of doping compensation is higher in the low doped epitaxial layer

Radiation hardness – detectors

35 MeV O⁺

Increasing the ion fluence (defect density), the characteristics of the detectors deteriorate:

1) Charge Collection Efficiency (CCE) decreases

2) The FWHM increases

M. De Napoli et al. Nucl. Phys. B 197 (2009) 198

CONCLUSIONS

- SiC- Schottky diodes are interesting for high energy ion detectors, showing linearity and high resolution
- The ion irradiation introduces point defects *(low fluence)* or clusters of point defects *(high fluence)*
 - Deactivation of dopant
 - Increase of the leakage current (high fluence)
- The efficiency of point defect introduction depends on the ion energy
- Ion irradiation at high dose (> 5x10²² eV/cm³) induces a decrease of detection efficiency and a deterioration of detector resolution (FWHM > 10%)