Silicon Detectors in Space: the INFN experience

G. Ambrosi

Istituto Nazionale di Fisica Nucleare

LNS, 7 Aprile 2016

Energies and rates of the cosmic-ray particles

FERMI all sky map

Turner @ ICRC 2003

The instrument we need has ...

- performance a la `particle physics':
 - high resolution measurements of momentum, velocity, charge and energy
- characteristics to properly work in the space environment:
 - Vibration (6.8 G rms) and acceleration (17 G)
 - Temperature variation (day/night $\Delta T = 100^{\circ}C$)
 - Vacuum (10⁻¹⁰ Torr)
 - Orbital debris and micrometeorites
 - Radiation (Single Event Effect)
- limitation in weight (15000 lb), power (3KW), bandwidht and maintenance
- Compliant with EMI/EMC specs

exact stress numbers depend from the detail of the mission, here AMS-02 values are reported

INFN HEP detector in space

- 1998: AMS-01
 - permanent magnet with silicon tracker
 - 10 days flight on Space Shuttle
- 2006: PAMELA
 - permanent magnet with silicon tracker
 - taking data since launch, satellite
- 2007: AGILE
 - Silicon-Tungsten tracker
 - taking data since launch, satellite
- 2008: FERMI
 - Silicon-Tungsten tracker
 - taking data since launch, satellite
- 2011: AMS-02
 - permanent magnet with silicon tracker
 - taking data since launch, International Space Station
- 2015: DAMPE
 - Silicon-Tungsten tracker
 - taking data since launch, satellite

2015年12月17日8时12分

The DAMPE Detector

W converter (1.43 X_0) + thick calorimeter (31 X_0) + precise tracking + charge measurement \implies high energy γ -ray, electron and CR telescope

Silicon detectors in the '90s

LEP accelerator @ CERN

INFN HEP detector in space

- 1998: AMS-01
 - permanent magnet with silicon tracker
 - 10 days flight on Space Shuttle
- 2006: PAMELA
 - permanent magnet with silicon tracker
 - taking data since launch, satellite
- 2007: AGILE
 - Silicon-Tungsten tracker
 - taking data since launch, satellite
- 2008: FERMI
 - Silicon-Tungsten tracker
 - taking data since launch, satellite
- 2011: AMS-02
 - permanent magnet with silicon tracker
 - taking data since launch, International Space Station
- 2015: DAMPE
 - Silicon-Tungsten tracker
 - taking data since launch, satellite

Spectrometer vs Calorimeter

Silicon microstrip detector

Spatial resolution:

- Strip pitch 25 200 µm
- Readout pitch 100 300 μm

Silicon ladder

Silicon Tracker

AMS-01 Silicon Tracker

PAMELA 2006

Silicon detectors with electronics

PAMELA Calorimeter

<u>Si-W Calorimeter</u>

- Measures energies of e^{\pm} . $\Delta E/E = 15\% / E^{1/2} + 5\%$
- Si-X / W / Si-Y structure.
- 22 Si / 21 W $\Rightarrow 16 X_0$ / $0.9 \lambda_0$
- Imaging: EM vs- hadronic discrimination, longitudinal and transverse shower profile
- Total number of channels
 4224
- Wide dynamic range $\cong 1$ 1000 MIP

Calorimeter Requirements:

- p/e⁺ selection eff. ~ 90%
- p rejection factor $\sim 10^5$
- e^- rejection factor > 10^4

AMS-02: 9 planes with 200,000 channels aligned to 10 microns

AGILE 2007

FERMI 2008

DAMPE Si Ladder and Layer

the Dampe Silicon Tracker

the DAMPE Silicon Tracker

DAMPE STK resolution after alignment

residuals x z -210 mm residuals x z -176 mm residuals x z -144 mm 2400E 3000F $\sigma = 77 \mu m$ $\sigma = 48 \mu m$ σ=48μm 3000 mean=7µm mean=-1um 2200E mean=-2µm 2000 2500 2500 1800 1600 2000 2000 1400 1200 1500 1500 1000 800F 1000 1000 600Ē 400 500 500 200F -9.6 _<mark>8.</mark>6 0.4 0.2 0.2 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.4 -0.4 -0.2 0 0.4 Residual (mm) Residual (mm) Residual (mm) residuals x z -111 mm residuals x z -79 mm residuals x z -46 mm 2500 $\sigma = 41 \mu m$ σ=68μm $\sigma = 48 \mu m$ 3000 mean=-1µm mean=-3µm mean=2µm 3000 2000 2500 2500 2000F 1500 2000 1500 1500 1000 1000 1000 500 500F 500 _<u>8.6</u> <u>_____</u>6.6 0.2 0.4 -0.6 -0.2 0.2 0.4 0.4 -0.4 -0.2 0 -0.4 0 -0.4 -0.2 0 0.2 Residual (mm) Residual (mm) Residual (mm)

DAMPE STK resolution vs angle

The DAMPE Detector

W converter (1.43 X_0) + thick calorimeter (31 X_0) + precise tracking + charge measurement \implies high energy γ -ray, electron and CR telescope

Ladder biases and currents (AMS-02)

TELEMETRY DATA TRENDING: BIAS CURRENT

NOISE TRENDING

- This is roughly in agreement with what expected from the increase in the bias current from radiation damage.
 - Projects to a negligible noise increase after 10 years.

FERMI

DAMPE Silicon Ladders

Ladder leakage currents at 80V

Total leakage current for the 192 installed ladders is excellent

Readout ASICs

- Use updated version of the ASIC used by AMS-02: VA64HDR9a → VA140
 - By Gamma Medica-Ideas (Oslo), 0.35 µm (was 0.8) CMOS technology
 - Improved performance in noise, power and radiation tolerance

Parameter	VA64HDR9A	VA140	
Noise, Cd=0pF (eRMS)	290	100	
Noise, Cd=50pF (eRMS)	520	430	435
Noise, Cd=100pF (eRMS)	810	780	
DNR	+100fC,-200fC	±200fC	
Linearity ± 72fC			
Negative:	±6%	±2%	
Positive:	±12%	±5.5%	
Power cons. (mW/channe	el) 0.8	0.29	
Peaking time (µs)	4.5	7.5	

Readout ASICs

- Use updated version of the ASIC used by AMS-02: VA64HDR9a → VA140
 - By Gamma Medica-Ideas (Oslo), 0.35 μm (was 0.8) CMOS technology
 - Improved performance in noise, power and radiation tolerance
 - **10 chips already available in Perugia** •

Radiation 'hard' electronics

The problem are the SEE (Single Event Effect)

similar test on all active components current limit protection is present for all active components

LIMADOU

LIMADOU

Conclusions

- In space applications there is a massive use of 'old technology'
- Silicon Strips Detector fulfill the requirements of particle detector in space (Low Earth Orbit)

Conclusions

- In space applications there is a massive use of 'old technology'
- Silicon Strips Detector fulfill the requirements of particle detector in space (Low Earth Orbit)
- Opportunities for new technologies in the photon detection (X-rays, bolometers)
- New technologies open opportunity for new physics
- It is (not) difficult to put HEP detectors in space