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A	few	years-old	scenario	
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FERMI	all	sky	map	
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The instrument we need has … 
•  performance a la ‘particle physics’: 

–  high resolution measurements of momentum, velocity, 
charge and energy 

•  characteristics to properly work in the space 
environment: 
–  Vibration (6.8 G rms) and acceleration (17 G) 
–  Temperature variation (day/night ΔT = 100oC) 
–  Vacuum (10-10 Torr) 
–  Orbital debris and micrometeorites 
–  Radiation (Single Event Effect) 

•  limitation in weight (15000 lb), power (3KW), bandwidht 
and maintenance 

•  Compliant with EMI/EMC specs 

exact	stress	numbers	depend	from	the	detail	of	the	mission,	
here	AMS-02	values	are	reported	



INFN	HEP	detector	in	space	
•  1998:	AMS-01	

–  permanent	magnet	with	silicon	tracker	
–  10	days	flight	on	Space	ShuMle	

•  2006:	PAMELA	
–  permanent	magnet	with	silicon	tracker	
–  taking	data	since	launch,	satellite	

•  2007:	AGILE	
–  Silicon-Tungsten	tracker	
–  taking	data	since	launch,	satellite	

•  2008:	FERMI	
–  Silicon-Tungsten	tracker	
–  taking	data	since	launch,	satellite	

•  2011:	AMS-02		
–  permanent	magnet	with	silicon	tracker	
–  taking	data	since	launch,	InternaSonal	Space	StaSon	

•  2015:	DAMPE	
–  Silicon-Tungsten	tracker	
–  taking	data	since	launch,	satellite	
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The DAMPE Detector   

W converter (1.43 X0) + thick calorimeter (31 X0)        
+ precise tracking + charge measurement ➠  
high energy γ-ray, electron and CR telescope 
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Silicon	detectors	
	in	the	‘90s	

LEP	accelerator	@	CERN	
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Spectrometer	vs	Calorimeter	
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SpaSal	resoluSon:	
-  3	–	10	µm	spectrometer	
-  30	–	70	µm	calorimeter	



Silicon microstrip detector 

Spatial resolution: 
-  Strip pitch 25 – 200 µm 
-  Readout pitch 100 – 300 µm  
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AMS-01	Silicon	Tracker	
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PAMELA	2006	

18	

Silicon	detectors	with	electronics	



PAMELA	Calorimeter	
Si-W Calorimeter 

•  Measures energies of e±.  

    ΔE/E = 15% / E1/2 + 5% 

•  Si-X / W / Si-Y structure. 

•  22 Si / 21 W ⇒ 16X0 / 0.9λ0 

•  Imaging: EM - vs- hadronic 
discrimination, longitudinal  
and transverse shower profile 

•  Total number of channels 
4224 
 
•  Wide dynamic range ≅ 1 - 
1000 MIP 

Calorimeter Requirements: 
•  p/e+ selection eff. ∼ 90% 
•  p rejection factor ∼ 105 

•  e- rejection factor > 104 



AMS-02: 9 planes with 200,000 channels aligned to 10 microns  
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AGILE	2007	
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FERMI	2008	
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DAMPE	Si	Ladder	and	Layer	

 192 ladders 

 768 silicon sensors 

1152 ASICs  

73728 channels 
12 layers, 6-x and 6-y  

38 cm
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the Dampe Silicon Tracker 

April 10th 2015 
DPNC clean room 
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the DAMPE Silicon Tracker 

April 10th 2015 
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DAMPE STK resolution after alignment 
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DAMPE STK resolution vs angle 



The DAMPE Detector   

W converter (1.43 X0) + thick calorimeter (31 X0)        
+ precise tracking + charge measurement ➠  
high energy γ-ray, electron and CR telescope 
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Leakage current at the level 
of nA per channel 
à  few µA per ladder 
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Ladder biases and currents (AMS-02) 

Silicon fully depleted at ~ 40V 
à  nominal bias for ladder at 
80V 
à  possibility to operate at 60V 
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DAMPE Silicon Ladders

Philipp	Azzarello	 33	

•  Alignment	precision	required:	20	μm		
•  97%	of	ladders	<	10	μm	

Total	leakage	current	for	the	192	
installed	ladders	is	excellent	



Readout	ASICs				
•  Use	updated	version	of	the	ASIC	used	by	AMS-02:	VA64HDR9a	→	VA140	

•  By	Gamma	Medica-Ideas	(Oslo),	0.35	μm	(was	0.8)	CMOS	technology	
•  Improved	performance	in	noise,	power	and	radia/on	tolerance	
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	Parameter																							 	 	VA64HDR9A									VA140																			
	 	 	 	 	 	 	 				
	Noise,	Cd=0pF	(eRMS)											290																	 	 	100 								
	Noise,	Cd=50pF	(eRMS)									520																	 	 	430														 		
	Noise,	Cd=100pF	(eRMS)							810																	 	 	780				
	DNR										 	 											 	+100fC,-200fC							 			±200fC						
	Linearity	±	72fC											
								Nega/ve:																												±6%																 	 	±2%				
								Posi/ve:																												 	±12%																	 	±5.5%				
	Power	cons.	(mW/channel)				0.8																	 	 	0.29												
	Peaking	/me	(µs)											 	 	4.5															 							 	7.5									

	



Readout	ASICs				
•  Use	updated	version	of	the	ASIC	used	by	AMS-02:	VA64HDR9a	→	VA140	

•  By	Gamma	Medica-Ideas	(Oslo),	0.35	μm	(was	0.8)	CMOS	technology	
•  Improved	performance	in	noise,	power	and	radia/on	tolerance	
•  10	chips	already	available	in	Perugia	
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	Parameter																							 	 	VA64HDR9A									VA140																			
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AMS charge ID capabilities 



RadiaSon	‘hard’	electronics	

The problem are the SEE (Single Event Effect) 

similar	test	on	all	acSve	components	
current	limit	protecSon	is	present	for	all	acSve	components	

Example:	AMS-02	Tracker	front	end	chip	



Current	and	Future	projects	(space)		

ISS_CREAM	

DAMPE	

HERD	

Gamma-400	

CALET	

AMS-03	
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Conclusions	
•  In	space	applicaSons	there	is	a	massive	use	of	
‘old	technology’	

•  Silicon	Strips	Detector	fulfill	the	requirements	of	
parScle	detector	in	space	(Low	Earth	Orbit)	

•  		

•  		

•  		
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Conclusions	
•  In	space	applicaSons	there	is	a	massive	use	of	‘old	
technology’	

•  Silicon	Strips	Detector	fulfill	the	requirements	of	
parScle	detector	in	space	(Low	Earth	Orbit)	

•  OpportuniSes	for	new	technologies	in	the	photon	
detecSon	(X-rays,	bolometers)	

•  New	technologies	open	opportunity	for	new	physics	

•  It	is	(not)	difficult	to	put	HEP	detectors	in	space	
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