SiC within INFN: status and perspectives

Valter Bonvicini

INFN Trieste

Workshop "From Silicon to SiC detectors", LNS, 7-8 aprile 2016

SiC properties

- SiC sensors suited for:
 - room/high-temperature and harsh environment detector operation;
 - UV photon detection (visible-blind)
- Characteristics:
 - Wide bandgap energy (E_g ⋈ 3.27 eV)
 - High breakdown electric field (3 MV cm⁻¹)
 - High carrier saturation drift velocity (2 ⋈ 10⁷ cm s⁻¹)
 - High displacement atom energy (22 35 eV)

Comparison between SiC and other semiconductors properties

Table 1. Comparison of properties of selected important materials mostly used for radiation ionizing detector realization with semiconductor 4H-SiC. Data compiled from [14, 23-25] and references therein.

Property	D	Si	Ge	${\tt GaA}s$	CdTe	4H–SiC
Bandgap (eV)	5.5	1.12	0.67	1.42	1.49	3.27
Relative dielectric constant	5.7	11.9	16	13.1	10	9.7
Breakdown field (MV cm ⁻¹)	10	0.3	0.1	0.4	0.5	(3.0)
Density (g cm ⁻³)	3.5	2.3	5.33	5.3	5.9	3.2
Atomic number Z	6	14	32	31-33	48-52	14—6
e-h creation energy (eV)	13	3.6	2.95	4.3	4.42	<i>7.7</i> 8
Saturated electron velocity (10^7 cm s^{-1}) at 300 K	2.2	1.0	0.6	1.2	1.0	(2)
Electron mobility (cm ² V ⁻¹ s ⁻¹) at 300 K	1800	1300	3900	8500	1100	800
Hole mobility (cm ² V ⁻¹ s ⁻¹) at 300 K	1200	460	1900	400	100	115
Threshold displacement energy (eV)	40–50	13-20	16-20	8-20	6–8	22–35
Minimum ionizing energy loss (MeV cm ⁻¹)	4.7	2.7	6	5.6		4.4

From F. Nava et al., Meas. Sci. Technol. 19 (2008) 102001

SiC as detector material

- Potential of SiC as radiation detector has been long recognized:
 - First SiC neutron detectors > 50 years ago (Babcock et al. 1957;
 Babcock & Chang 1962)
- Poor material properties of the SiC available at that time and lack of adequate investment have hindered the development of the technology for detector fabrication until the 90ies.
- Effort concentrated on improving the properties of SiC by reducing defects produced during the crystal growing process (dislocations, micropipes, etc.) availability of much higher quality SiC semiconductor materials
 - A parallel effort resulted in improved SiC electronics fabrication techniques

SiC@INFN

- Currently, two initiatives within INFN CSN5
- ClasSiC (P. Lenzi, grant for young researchers 2015)
 - Dual read-out hadronic calorimetry
 - TOF-PET with sensitivity to Cherenkov light (10 ps resolution)
 - Need for single-photon sensitivity
 - Final target: device with intrinsic amplification $(10^3 10^4)$
- SiCILIA (S. Tudisco, financed as CSN5 "call" 2016)
 - SiC as material for rad-hard detectors in nuclear physics (clear motivating physics case)
 - SiC ΔE-E telescope for ion identification and spectroscopy)
 - Need for unprecedented active volume thickness
 - Large production of large area (cm²) devices
 - Industrial impact

IFD2015 (Torino, 16-18/12/2015)

- Bring together the vast INFN community involved in detector technology development: many achievements/efforts can be extremely useful for applications different from the starting one;
 - Times have changed (and available resources too): we cannot afford anymore duplications of R&D...
- Some strategic elements have emerged:
 - Collaboration with the industries
 - Collaboration with other Research Institutes
 - Preservation and development of the know-how and transmission to the next generations.

Collaboration with other Research Institutes/Communities

- New technologies require collaborations
 - Some technologies are in our hands, others are not
 - Even for "our" technologies, cross-collaboration and knowledge amongst the community is crucial (e.g. this workshop)

CLASSIC and SICILIA

Investigate SiC detectors from complementary points of view

Workshop **CLASSIC** SiCILIA Light detection **Applications** Particles detection Lenzi, IFD2015 - Complex p-n junction - Schottky - Multi-layer Junction - epitaxial p-n - ion implantation ۵ Thin substrates Thick, high purity substrates Substrate In house CNR-IMM Manufacturing P-n junctions @ ST (with opportunistic Schottky @ FBK use of ST facilities)

SiC detectors: perspectives

- In recent years, many groups have been working on SiC R&D for a wide spectrum of applications:
 - Space (especially X-ray detectors for planetary exploration, see e.g. J.E. Lees et al., *Nucl. Instr. and Meth. in Phys. Res.* A 604 (2009) 174)
 - Laser-driven ions (e.g. TOF diagnostics at ELI), see e.g. G.
 Bertuccio et. al., Appl. Surf. Sci. 272 (2013) 128, see also G.
 Lanzalone's talk
 - Neutron detectors
 - Homeland security (fast n and)
 - Nuclear plants (reactor monitoring, spent fuel monitoring, ...)
 - Oil and gas prospections (nuclear geophysics)
 - Activities @ ESS
 - BNCT neutron exposure motoring

Conclusions

- SiC stands out as one of the most promising "future" semiconductor material for radiation detectors fabrication;
- Collaboration with Industry and other Research Institutes is strategic in order to improve the technology and make it available to the INFN research community;
- In this framework, CSN5 strongly supports R&D on SiC technology;
- The rapid pace of SiC detector development and the large number of research groups involved worldwide bode well for the future of SiC detector applications.