
Applications of GPUs

Felice Pantaleo

CERN – EP Department

1

2

3

4

5

6

7

8

9

CUDA 8

• New Unified Memory capabilities

• Powerful new profiling capabilities

• Improved compiler performance and heterogeneous lambda

support

10

11

With operating system support, Pascal is capable of supporting unified

memory with the default system allocator. Here, malloc is all that is

needed to allocate memory accessible from any CPU or GPU in the

system

With page faulting on GP100, locality can be ensured even for programs

with sparse data access, where the pages accessed by the CPU or GPU

cannot be known ahead of time, and where the CPU and GPU access

parts of the same array allocations simultaneously.

Dependency Analysis

12

experimental lambda support

13

Programming GPUs with compiler directives

GPU Programming

14

Accelerators by directives

• CUDA can be low-level and closely coupled to the GPU

• With CUDA, the user needs to write specialist kernels:

- Hard to write and debug

- Hard to optimise for specific GPU

- Hard to maintain

+ Performance boost

+ Flexible

• Programming GPUs using directives could be an option if the user

already knows how to program parallel processors

• Knowledge of thread synchronization mechanisms and contention

avoidance techniques still required

Memory and Execution Models

Execution model:

• Concept of an accelerator region

• Accelerator task tied to accelerator it starts on

• Complete at known locations, barriers,

“acc_sync”, program exit

• Data motion directives provide hints to the

compiler on where to place data that accelerator

regions access

Examples

#pragma omp target device(0) map(tofrom:B)

#pragma omp teams num_teams(num_blocks) num_threads(bsize)

#pragma omp distribute

for (i=0; i<N; i += num_blocks)

#pragma omp parallel for

for (b = i; b < i+num_blocks; b++)

B[b] += sin(B[b]);

17

#pragma acc parallel copy(B[0:N]) num_gangs(numblocks)\

vector_length(bsize)

#pragma acc loop gang vector

for (i=0; i<N; ++i) {

B[i] += sin(B[i]);

}

OpenMP 4.0

OpenACC

Libraries

GPU Programming

18

Thrust

• Parallel algorithms and data structures

• Based on the standard C++

• Can perform different operations on the GPU like:

– Sort

– Scan

– Transform

– Reductions

• Easy to integrate in an existing software framework

• Implementation details invisible to the user

• Info: https://developer.nvidia.com/thrust

19

https://developer.nvidia.com/thrust

Thrust samples

20

Thrust samples (ctd.)

21

ArrayFire

• Interface for C, C++, Java, R, Fortran

• Supports CUDA and OpenCL (NVIDIA GPUs, Xeon Phi, CPUs

x86, ARM)

• API based on the concept of Array

• Contains hundreds of functions: arithmetic, linear algebra,

statistics, signal processing, image processing, and related

algorithms

• It can execute loop iterations in parallel with gfor

22

http://www.arrayfire.com/docs/page_gfor.htm

ArrayFire sample

• gfor distributes all the iterations of a for-loop to the GPU threads

for (int i = 0; i < n; ++i)

A(i) = A(i) + 1;

23

ArrayFire sample

• gfor distributes all the iterations of a for-loop to the GPU threads

gfor (array i, n)

A(i) = A(i) + 1;

In HEP case, data would need to be

transformed into Structures of arrays, in

order to enable efficient parallelism and

memory access pattern.

24

29

Is there a place for GPUs in all this?

• At trigger level:

– Controlled environment

– High throughput density required

• On the WLCG:

– Software running on very different/diverse hardware

• Starting from Pentium 4 to Broadwell

– Today’s philosophy consists in “one size fit all”

• Legacy software runs on both legacy and new hardware

– Experiments pushing to higher and higher data rates

– WLCG strategy: live within ~fixed budgets

– Make better use of resources: the approach is changing

• Power consumption is becoming a hot-spot in the total bill

– Especially in European Data Centers

• This will be even more important with the HL-LHC upgrade

– Cope with 2-3x the amount of data
30

Deep Neural Networks @LHC

• Growing interest @CERN in Deep Neural Network applications for

LHC experiments

• Assess data quality with trained algorithms (replacing as much as

possible 24/7 shifts of humans)

• Take fast decisions (keep or reject the event) @ trigger w/o having to

reconstruct the full event (save fraction of online CPU for other

usages)

• Jet identification (see next slide)

• DNN training naturally happens on GPUs. Currently investigating the

possibility of creating O(50) GPU clusters @CERN

– give people access to GPUs for small-scale project

– will increase usage of GPUs between experiment average “users”

– might serve as a seed for a larger cluster on the time scale of HL-LHC (where

DNN might become integrated in our standard reconstruction software)

Jet Imagining with DNN

32

• A Jet is a shower of stable particles initiated
by an unstable jet “mother particle” (a quark,
a gluon, a Higgs boson, etc)

• Jet tagging is the identification of the nature
of the jet mother from the features of the
jet

• Normally, jets are
– reconstructed with custom/physics-driven

unsupervised algorithms (jet algorithms)

– identified with supervised ML algorithms (BDT,
NN, …)

• Ongoing work to explore DNN, e.g.
“recycling” progresses on image processing

• Growing interest in advanced DNN →
Growing interest in having GPU clusters at
hand for training

See DS@LHC Talk

PATATRACK

33

Tracking at CMS

• Particles produced in the

collisions leave traces (hits) as

they fly through the detector

• The innermost detector of CMS

is called Tracker

• Tracking: the art of associate

each hit to the particle that left it

• The collection of all the hits left

by the same particle in the

tracker along with some

additional information (e.g.

momentum, charge) defines a

track

• Pile-up: # of p-p collisions per

bunch crossing

34

35

PATATRACK

• PATATRACK

– It is a hybrid software to run on heterogeneous HPC platforms for emulating

a GPU-based track trigger, data transfer and synchronization

• Tracker data partitioning

– Fast simulation on fast geometry and uniform magnetic field

– The information produced by the whole tracker cannot be processed by one

GPU in a trigger environment

• However this is possible at HLT and Reconstruction stages

• Low-latency data transfers between network interfaces and multiple

GPUs (GPU Direct)

• Parallel Algorithms

• Cellular Automaton executes completely in-cache for lowest latency

36

Partitioning

• Tracks ~straight if seen from a longitudinal perspective (z,R) plane

• Number of tracks approx. uniform in h

37

Partitioning (ctd.)

• Eta bins could have been treated independently

– Pile-up and longitudinal impact parameter (displacement of the collision point

along the z-axis) limit this hypothesis

– Area on the next layer that needs to be scanned for compatible Stubs searching

not obvious

38

Partitioning (ctd.)

• Simulation for different longitudinal impact parameters

• Lists of segments on subsequent layers evaluated beforehand

• Each streaming multiprocessor on a GPU is in charge of one list

39

In-Shared-Memory Cellular Automaton

Mondrian of Life

40

Input Data

• The input data required by the Cellular Automaton Algorithm is a array of

stubs contained in a h-chain in a specific f-sector

• In order to minimize the number of messages sent, this array-payload is

wrapped around a custom communication protocol header

• This header contains :

– the ID of the packet

– the size in # of stubs

– the number of layers contained in the packet

– the offset of the first stub in a specific layer wrt to the beginning of the payload

41

• This packet is then passed as an array of

MPI_BYTE type (a.k.a. unsigned char)

• Memory pre-allocated on the GPU to host

a packet received from the NIC and loaded

directly into the GPU global memory

Data movement without GPUDirect

• Stubs from each chain are sent to a different GPU Streaming

Multiprocessor/different node where the kernel runs completely

in shared memory

42

Data movement with GPUDirect

• GPUDirect accelerated communication with network and storage devices

• GPUDirect supports RDMA allowing latencies ~1us and link bandwidth

~7GB/s

43

Cell creations

• A Cell is a class containing information about:

– Two stubs

– Neighboring Cells on the following layers

– Neighboring Cells on the previous layers

• It can be constructed starting from a doublet of Stubs with similar h

and f

• In principle, the creation of Stubs can be executed in parallel:

– 1024 CUDA Threads are spawned (32 warps)

– Each warp takes one Stub on a layer and looks for a Stub in h-f window (in

parallel in groups of 32)

– Every time a stub with similar eta/phi is found a new cell is created

– Shared memory for cells is pre-allocated

– Created cells are visible to all the threads

44

Mitigating Branch Divergence

45

W
a
r
p

0

W
a
r
p

3

W
a
r
p

2

W
a
r
p

1

find compatible

Stubs on next layer

find compatible

Cells
build tracks

Mitigating Branch Divergence

46

W
a
r
p

0

W
a
r
p

3

W
a
r
p

2

W
a
r
p

1

find compatible

Stubs on next layer

find compatible

Cells
build tracks

Neighbor finding

• We have now a CUDAQueue that contains all the Cells

• Threads are now reshuffled

– each thread is now associated to a Cell independently of the Cell’s layer

– If two Cells have one Stub in common and their h and f are similar they are

become Inner and Outer Neighbors one of the other

47

• This step will create a graph of

interconnected Cells

• Now it’s time to play Game of Life

and make the graph evolve!
RR

Evolution

• In the evolution stage each thread is associated to one Cell

• In order for evolution to start all the Cells’ State is set to 0

• The number of generations to evolve is set to (number of layers – 2)

• At each time step, each thread:

– For each Cell, if there is at least a outer neighbor sharing the same state, its state

is increasing by 1.

48

T=0T=1T=2

Track building

49

• Now that the evolution stage has completed each thread checks

whether its Cell is a Root Cell i.e.:

– It has no inner neighbor

– Its state is higher than a threshold

• Found Root Cells are hence pushed in a CUDAQueue

• Each thread is associated to a Root Cell and performs a recursive

Depth First Search on the Cells Graph

– While traversing its trie, a thread adds a cell to a track if the Cell state is

decreasing

Tests and Results

50

Wilkes - Acknowledgement

• Wilkes, technical specifications:

– 128 node Dell™ PowerEdge™ T620

– Dual-Socket Hexa-Core Intel E5-2630 (1536 cores in total)

– 64 GByte memory per node

– Scientific Linux release 6.6 (Carbon)

– MLNX_OFED 2.4-1.0.4 SW stack

– Dual-rail Mellanox Connect-IB FDR InfiniBand

– NVIDIA® Tesla K20 GPUs (2 GPUs per node)

• Wilkes, facts:

– The UK’s fastest academic cluster, deployed November 2013

– Specific design to allow GPU Direct over RDMA from both GPU within the node

– GPU LINPACK performance of ~240 TF

– Ranked second in the worldwide Green500 ranking Nov 2013 (3,631.86 MFLOPS/W)

51

Test Configuration

52

Tests

• Detector divided in:

– Trasversal section: 8 sectors, Df = p/2, each overlapping with the next one

by p/4

– Longitudinal section: 8 sectors, Dh=0.8

• Requirements for the creation of a Cell: Dh < 0.1, Df < 0.12

• Requirements for two cells to be neighbors: Dh < 0.1, Df < 0.12

• 40 p guns:

– 2 GeV < pT < 100 GeV

– -1 < h < +1

53

Results

54

• The efficiency of the algorithm could be improved by

extending the neighbor search to the second next layer

• Avg. efficiency: 0.81

Results

55

• The efficiency of the algorithm could be improved by

extending the neighbor search to the second next layer

• Avg. efficiency: 0.81

Results

• The fake rate could be reduced by adding further conditions to

the formation of the tracks, or by adding another step

• The duplicate rate is mainly due to the overlapping regions and

can hence be reduced further

56

Results (ctd.)

57

• GPU Direct very promising

– Data transmitted between nodes with

lowest latency

• Track Reconstruction highly

dependent on the combinatorics

• Ping times are included (t ~3ms)

Conclusion

• PATATRACK framework developed as initial liaison between the

HEP and HPC fields

– All the present efforts focused at single process on single node opportunistic

use of HPC infrastructures

• Communication, speed links and latencies already ready for the

detectors of the near future

– Gilder’s law still valid

• High bandwidth memories and high capacities (tens of GBs) would

allow higher time buffers at the lowest stages of the trigger

• Discussion with hardware producers to reduce latencies and better

meet our needs

58

Questions?

59

Backup

60

61

Branch Divergence

● Avoid frequent “phone calls” to the global memory and

read/write the data locally as much as possible before updating

global values

● Make use of registers and shared memory for aggregating partial

results

● Requires storage resources to keep copies of data structures

CUDA Queue

template< int maxSize, class T>

struct CUDAQueue

{

__inline__ __device__

int push(const T& element) {

auto previousSize = atomicAdd(&m_size, 1);

if(previousSize<maxSize)

{

m_data[previousSize] = element;

return previousSize;

} else {

atomicSub(&m_size, 1);

return -1;

};

62

