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2X Accelerated Systems,
96% of New Systems on NVIDIA

4X CUDA Developers,
10X in Hyperscale + Auto
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NVIDIA SDK

The Essential Resource for GPU Computing

The Essential Resource for GPU Developers

Deep Learning SDK NVIDIA DriveWorks
High-performance tools and Deep learning, HD mapping and

libraries for deep learning supercomputing solutions, from

ADAS to fully autonomous

NVIDIA VRWorks™
A comprehensive SDK for VR
headsets, games and professional

applications

developer.nvidia.com |

NVIDIA GameWorks™

Advanced simulation and rendering

technology for game development
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NVIDIA GAMEWORKS

Volumetric Lighting | Voxel Accelerated Ambient Occlusion | Hybrid Frustum Traced Shadows

J—
COMPUTEWORKS / GAMEWORKS \\ VRWORKS DESIGNWORKS DRIVEWORKS JETPACK
4 d

FARCRY:

HairWorks WaveWorks FlameWorks

and other technologies such as:
Clothing, VXGI, Flex, Destruction




NVIDIA DESIGNWORKS

Adobe support of MDL | Siemens NX adopts Iray

COMPUTEWORKS GAMEWORKS VRWORKS / DESIGNWORKS DRIVEWORKS JETPACK

Iray MDL OptiX Path Rendering

and other technologies such as:
GL Extensions, GRID, GPU Direct for Video, Mosaic, VXGI, Warp and Blend
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NVIDIA VRWORKS

Oculus Rift and HTC Vive integration | Epic, Max Play and Unity game engines

/
GAMEWORKS / VRWORKS \ DESIGNWORKS DRIVEWORKS JETPACK
J

©  @EFORCE GTX

GEFORCE GTX

&7 GEFORCE GTX ©

Multi-Res Shading VR SLI Context Priority Warp and Blend

and other technologies such as:
Direct Mode, GPUDirect for Video
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NVIDIA COMPUTEWORKS

CUDA 8 — | cuDNN 5 — | nvGRAPH —
IndeX plug-in for ParaView —

/ COMPUTEWORKS \ GAMEWORKS VRWORKS DESIGNWORKS DRIVEWORKS
-

JETPACK

cuDNN nvGRAPH

and other technologies such as:
AMGX, cuSOLVER, cuSPARSE, OpenACC, NSIGHT, THRUST
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NVIDIA DRIVEWORKS

JPL — EAP —
General Release —

COMPUTEWORKS GAMEWORKS VRWORKS DESIGNWORKS / DRIVEWORKS \ JETPACK
\

SensorFusion Detection Localization

and other technologies such as:
Driving, Planning




WORLD’S FIRST AUTONOMOUS CAR RACE

10 teams, 20 identical cars | DRIVE PX 2: The “brain” of every car | 2016/17 Formula E season

& ROBORACE




* New Unified Memory capabilities

* Powerful new profiling capabilities

* Improved compiler performance and heterogeneous lambda
support

Pascal Unified Memory

Pascal

GPU CPU

! !

lified Memory

(Limited to System Memory Size)
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CPU Code CUDA 6 Code with Unified Memory

void sortfile(FILE *fp, int N) { void sortfile(FILE *fp, int N) { void sortfile(FILE *fp, int N) {
char *data; char *data; (cihar *dat;; fehee S
data = (char *)malloc(N); cudamallocManaged(&data, N); ata = (char *)malloc(N);
fread(data, 1, N, fp);
fread(data, 1, N, fp); fread(data, 1, N, fp);
gsort(data, N, 1, compare); gsort<<<...>>>(data,N,1,compare); gsort<<<...>>>(data,N,1,compare);
cudabDeviceSvnchronize(); cudabevicesynchronize();
se_data(data);
use _data(data); use_data(data); use_data(data)
free(data); cudaFree(data); free(data):
} } } *With operating system suppo

With operating system support, Pascal is capable of supporting unified
memory with the default system allocator. Here, malloc 1s all that 1s
needed to allocate memory accessible from any CPU or GPU in the
system

With page faulting on GP100, locality can be ensured even for programs
with sparse data access, where the pages accessed by the CPU or GPU
cannot be known ahead of time, and where the CPU and GPU access

11

parts of the same array allocations simultaneously.
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experimental lambda support B
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void saxpy(float *x, flocat *y, float a, int N) {

using namespace thrust;

auto r = counting iterator (0);
auto lambda = [=]  host = device  (int 1) {
y[il = a * x[i] + yl[il];

};

if (N > gpuThreshold)
for each(device, r, r+N, lambda);
else

for each (host, r, r+N, lambda);




Programming GPUs with compiler directives

GPU Programming



Acceleratots by directives

* CUDA can be low-level and closely coupled to the GPU

* With CUDA, the user needs to write specialist kernels:
- Hard to write and debug
- Hard to optimise for specific GPU
- Hard to maintain

+ Performance boost

+ Flexible

* Programming GPUs using directives could be an option if the user
already knows how to program parallel processors

* Knowledge of thread synchronization mechanisms and contention
avoidance techniques still required



Memory and Execqun Models

els rx.lkb

Execution model:

* Concept of an accelerator region

* Accelerator task tied to accelerator it starts on

* Complete at known locations, barriers,
“acc_sync’, program exit

* Data motion directives provide hints to the

compller on where to place data that accelerator
regions access



Examples

OpenMP 4.0

#pragma omp target device(0) map (tofrom:B)
#pragma omp teams num teams (num blocks) num threads (bsize)
#pragma omp distribute
for (i=0; i<N; i += num blocks)
#pragma omp parallel for
for (b = 1; b < i+num blocks; b++)
B[b] += sin(B[Db]) ;

OpenACC

#pragma acc parallel copy(B[0:N]) num;gangs(numblocks)\
vector length (bsize)
#pragma acc loop gang vector
for (i=0; 1i<N; ++1) {
B[i] += sin(B[1]):;



lLibraries

GPU Programming



Thrust

Parallel algorithms and data structures
Based on the standard C++
* Can perform different operations on the GPU like:

— Sort
— Scan
— Transform

— Reductions
* Easy to integrate in an existing software framework

* Implementation details invisible to the user

Info: https://developetr.nvidia.com/thrust



https://developer.nvidia.com/thrust

Thrust sampnlies

» WO 7]':'1‘5 +

#include <thrust/host_vector.h=
#include «<thrust/device_vector. h>
#include «<thrust/generate. h=
#include <thrust/sort.h>
#include <thrust/copy.h>
#include <cstdlibe

1int main{wvoid)

1

S/ generate 32M random numbers on the host
thrust: :host_wvector<int> h_weci(32 << 20);
thrust: :generatelh_vec.begin(). h_wvec.end(). rand);

S transfer data to the device
thrust: :device_vector<int> d_vec = h_wvec;

// sort data on the device (846M keys per second on GeForce GTX 430)
thrust: :sort({d_wvec.begin()., d_wvec.end());

S/ transfer data back to host
thrust: :copy(d_vec.begin(). d_wec.end(). h_wvec.begin());

return 0;

20
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Thrust samples (ctd.
- *7 > two 1 jets

#include «<thrust/host_wvector. h>
#include «<thrust/device_wvector.h=>
#include <thrust/generate. h=
#include «<thrust/reduce. h>
#include «<thrust/functional.h=>
#include «<cstdlib>

int main(void)
1
// generate random data on the host
thrust: :host_wvector<int> h_wvec(100);
thrust: :generatelh_wvec.begini(). h_wec.end(). rand);

S transfer to device and compute sum
thrust: :device_vector<int= d_vec = h_wvec;

int x = thrust::reduceld_vec.begin(), d_vec.end(). 0. thrust::plus<int=());
return 0]



Interface for C, C++, Java, R, Fortran

Supports CUDA and OpenCL (NVIDIA GPUs, Xeon Phi, CPUs
x86, ARM)
API based on the concept of Array

Contains hundreds of functions: arithmetic, linear algebra,
statistics, signal processing, image processing, and related
algorithms

It can execute loop iterations in parallel with gfor

{A} ARRAYFIRE


http://www.arrayfire.com/docs/page_gfor.htm

* cofor distributes all the iterations of a for-loop to the GPU threads
for (int 1 = 0; 1 < n; ++1)

A(1) = A(1) + 1;



ArrayFire sample

* cofor distributes all the iterations of a for-loop to the GPU threads

gfor (array 1, n)
A(1) = A(1) + 1;

In HEP case, data would need to be
transformed into Structures of arrays, in
order to enable efficient parallelism and

memory access pattern.
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Is there a place for GPUs 1n all this? '/‘,
‘T two tjets + X, 601b .

I/

* At trigger level:

— Controlled environment

— High throughput density required
* On the WLCG:

— Software running on very different/diverse hardware

* Starting from Pentium 4 to Broadwell

— Today’s philosophy consists in “one size fit all”

* Legacy software runs on both legacy and new hardware
— Experiments pushing to higher and higher data rates
— WLCG strategy: live within ~fixed budgets
— Make better use of resources: the approach is changing
* Power consumption is becoming a hot-spot in the total bill
— Especially in European Data Centers
* This will be even more important with the HL-LHC upgrade
— Cope with 2-3x the amount of data



Deep Neural Networks @ILHC
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* Growing interest @CERN in Deep Neural Network applications for
LHC experiments

* Assess data quality with trained algorithms (replacing as much as
possible 24/7 shifts of humans)

* Take fast decisions (keep or reject the event) (@ trigger w/o having to
reconstruct the full event (save fraction of online CPU for other
usages)

* Jetidentification (see next slide)

* DNN training naturally happens on GPUs. Currently investigating the
possibility of creating O(50) GPU clusters @CERN
— give people access to GPUs for small-scale project
— will increase usage of GPUs between experiment average “users”

— might serve as a seed for a larger cluster on the time scale of HL-LHC (where
DNN might become integrated in our standard reconstruction software)



Jet Imagmmg Wlth DNN

A Jetis a shower of stable particles initiated
by an unstable jet “mother particle” (a quark\
a gluon, a Higgs boson, etc)

Jet tagging is the 1dentification of the nature

\ Particle Jet Energy depositions
P in calorimeters

of the jet mother from the features of the 25b !
jet
* Normally, jets are |
=
— reconstructed with custom/physics-driven S|
unsupervised algorithms (jet algorithms) E | |
— identified with supervised ML algorithms (BDT, < Lol n
NN, ... . .
. Ongomg work to explore DNN,; e.g. 05}
rCCYChﬁg progresses on lmage prOC€SSIflg
* Growing interest in advanced DNN — |

00 05 10 15 20 25

Growing interest in having GPU clusters at
Relative 7

hand for training

See DS@I.HC Talk
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Tracking at CMS
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* Particles produced in the
collisions leave traces (hits) as

they fly through the detector

* The innermost detector of CMS
1s called Tracker

* Tracking: the art of associate o) o
each hit to the particle that left it —_— noide compac!

* The collection of all the hits left
by the same particle in the

: 010203 04 05 06 07 08 09 1 1,1 1,2 1,3 1,4 L5

trac.k.er alopg with Some o 11777770 P

additional information (e.g. e = -

10 1,9

momentum, charge) defines a gl e e || || || II Il || H || || 4

track = A e 1

] o nner Bamrel > = — = | |11 | L1771 I
* Pile-up: # of p-p collisions per e g o I i Endcap
b n h r n Pixel Barrel '© =====| |~ Inner Discs (T=C)
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PATATRACK =

PATATRACK

— It 1s a hybrid software to run on heterogeneous HPC platforms for emulating
a GPU-based track trigger, data transfer and synchronization

* Tracker data partitioning
— Fast simulation on fast geometry and uniform magnetic field

— The information produced by the whole tracker cannot be processed by one
GPU 1n a trigger environment

* However this is possible at HLT and Reconstruction stages

* Low-latency data transfers between network interfaces and multiple

GPUs (GPU Direct)
Parallel Algorithms

Cellular Automaton executes completely in-cache for lowest latency
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* Tracks ~straight if seen from a longitudinal perspective (z,R) plane

* Number of tracks approx. uniform in n
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Partitioning (ctd.) _——

* Eta bins could have been treated independently

— Pile-up and longitudinal impact parameter (displacement of the collision point
along the z-axis) limit this hypothesis

— Area on the next layer that needs to be scanned for compatible Stubs searching

///'/ _
S
// _
ST

not obvious

layers

7=0 beam



Partitioning (ctd.)
~> L two tjets + X, 60 1b

* Simulation for different longitudinal impact parameters
* Lists of segments on subsequent layers evaluated beforehand

* Each streaming multiprocessor on a GPU is in charge of one list
eta bins
/ / /4/ -
/A
—
//

layers

7=0 beam



Mondrian of Life



The input data required by the Cellular Automaton Algorithm is a array of
stubs contained in a Mn-chain in a specific ¢—sector

In order to minimize the number of messages sent, this array-payload is
wrapped around a custom communication protocol header

This header contains :
— the ID of the packet

— the size in # of stubs

— the number of layers contained in the packet

— the offset of the first stub in a specific layer wrt to the beginning of the payload

This packet 1s then passed as an array of
MPI_BYTE type (a.k.a. unsigned char)
Memory pre-allocated on the GPU to host
a packet received from the NIC and loaded
directly into the GPU global memory

cluster .
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Data movement without GPUDirect

Wo T i .'-1 S 4 "|\A 6L b
i

* Stubs from each chain are sent to a different GPU Streaming
Multiprocessor/different node where the kernel runs completely
in shared memory

CPU

GPL

42




Data movement with GPUDirect '/‘

wo T |ets + X, 601D
* GPUDirect accelerated communication with network and storage devices

* GPUDirect supports RDMA allowing latencies ~1us and link bandwidth
~T7GB/s

CPU




Cell creations

* A Cell is a class containing information about:
— Two stubs
— Neighboring Cells on the following layers
— Neighboring Cells on the previous layers

* It can be constructed starting from a doublet of Stubs with similar 1
and ¢

* In principle, the creation of Stubs can be executed in parallel:
— 1024 CUDA Threads are spawned (32 warps)

— Each warp takes one Stub on a layer and looks for a Stub in n-¢ window (in
parallel in groups of 32)

— Every time a stub with similar eta/phi is found a new cell is created

— Shared memory for cells is pre-allocated

— Created cells are visible to all the threads




Mitigating Branch Divergence

T »two tjets + X, 601D
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We have now a CUDAQueue that contains all the Cells

Threads are now reshuffled

— each thread is now assoclated to a Cell independently of the Cell’s layer

— If two Cells have one Stub in common and their | and ¢ are similar they are
become Inner and Outer Neighbors one of the other

This step will create a graph of
interconnected Cells

Now it’s time to play Game of Life
and make the graph evolve!




Evolution

In the evolution stage each thread is associated to one Cell

In order for evolution to start all the Cells” State is set to 0
* The number of generations to evolve is set to (number of layers — 2)

* At each time step, each thread:

— For each Cell, if there is at least a outer neighbor sharing the same state, its state
is increasing by 1.




Track building

* Now that the evolution stage has completed each thread checks
whether its Cell 1s a Root Cell 1.e.:

— It has no inner neighbor

— Its state 1s higher than a threshold
* Found Root Cells are hence pushed in a CUDAQueue

* Fach thread 1s associated to a Root Cell and performs a recursive

Depth First Search on the Cells Graph

— While traversing its trie, a thread adds a cell to a track if the Cell state is
decreasing




Tests and Results



Wilkes - Ackno.w.lejdger‘n’ent

A, A A, ADS, ADS, ole, RS, e,
(I’gw‘/-.\*'ﬁ/.\*“/;\*ﬁ"/;x*‘z-\*ﬂ"/;ﬂw/;\““/;x’m%

* Wilkes, technical specifications:
— 128 node Dell™ PowerEdge™ T620
— Dual-Socket Hexa-Core Intel E5-2630 (1536 cores in total)
— 64 GByte memory per node

Cambridge University

2nd

— Scientific Linux release 6.6 (Carbon)
— MLNX_OFED 2.4-1.0.4 SW stack
— Dual-rail Mellanox Connect-IB FDR InfiniBand
— NVIDIA® Tesla K20 GPUs (2 GPUs per node)
* Wilkes, facts:
— The UK fastest academic cluster, deployed November 2013
— Specific design to allow GPU Direct over RDMA from both GPU within the node
— GPU LINPACK performance of ~240 TF
— Ranked second in the worldwide Green500 ranking Nov 2013 (3,631.86 MFLOPS/W)

g e { & | | ' !

November 2013

58 UNIVERSITYOF %,
4P CAMBRIDGE '

1B-0 GPU-0 1B-1 GPU-1

PCI-E 16x PCI-E 16x
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: jets

Test Configuration




Detector divided in:

— Trasversal section: 8 sectors, AQ = /2, each overlapping with the next one

by mt/4
— Longitudinal section: 8 sectors, An=0.8
Requirements for the creation of a Cell: An < 0.1, A¢p < 0.12
Requirements for two cells to be neighbors: An < 0.1, A < 0.12

40 T guns:
— 2 GeV < pT < 100 GeV
—-1<n<+1



Efficiency
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The efficiency of the algorithm could be improved by
extending the neighbor search to the second next layer

Avyg. etficiency: 0.81

Efficiency Vs n

o
(o]
T T

I
St 4

\Il\ll‘lllll]llllllllll

e e

_*_

Efficiency

| 1 | 1
-1 -08 06 -04 02 0 02 04

.8 1

n

Efficiency Vs ¢

=y
T

b
(o]
T

et Attty

0.6—
0.4—

0.2—

=
SR

++




* Avg. efficiency: 0.81

Efficiency Vs Pt

Efficiency
T —

o
o)

IIII|II\I‘\III|IIII|\I\I‘Illll\l\l‘lllllllll
80 90 100

* The efficiency of the algorithm could be improved by
extending the neighbor search to the second next layer
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* The fake rate could be reduced by adding further conditions to
the formation of the tracks, or by adding another step

* The duplicate rate 1s mainly due to the overlapping regions and
can hence be reduced further
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Results (ctd.) =

Transmission FED Emul. to GPU Memory

* GPU Direct very promising e
09
— Data transmitted between nodes with  osf-
lowest latency “7E
0.6
* Track Reconstruction highly osE-
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PATATRACK framework developed as initial liaison between the
HEP and HPC fields

— All the present efforts focused at single process on single node opportunistic

use of HPC infrastructures
Communication, speed links and latencies already ready for the
detectors of the near future
— Gilder’s law still valid

High bandwidth memories and high capacities (tens of GBs) would
allow higher time buffers at the lowest stages of the trigger

Discusston with hardware producers to reduce latencies and better
meet our needs



Questions?



Backup



Branch Divergence

WO © ! '.“ S 4 A
i

threads

[o] (] [2](s][+][s][s][7] (5] (o] o] [11] [r2] i3] [14] [15]

if (x[tid]>42)
{

foo(x[tid]);
telse

{
oof (x[tid]);
}

time

Y
. Avold frequent “phone calls” to the global memory and

read/write the data locally as much as possible before updating
global values

. Make use of registers and shared memory for aggregating partial
results

. Requires storage resources to keep copies of data structures

61



CUDA Queue .

template< 1nt maxSize, class T>
struct CUDAQueue
{

inline device

int push?goggt T& eigment) {

auto previousSize = atomicAdd (&m size,
if (previousSize<maxSize)
{
m data[previousSize] = element;
return previousSize;
} else {
atomicSub (&m size, 1);
return -1;

Y



