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CUDA 8

• New Unified Memory capabilities

• Powerful new profiling capabilities

• Improved compiler performance and heterogeneous lambda 

support
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With operating system support, Pascal is capable of  supporting unified 

memory with the default system allocator. Here, malloc is all that is 

needed to allocate memory accessible from any CPU or GPU in the 

system

With page faulting on GP100, locality can be ensured even for programs 

with sparse data access, where the pages accessed by the CPU or GPU 

cannot be known ahead of  time, and where the CPU and GPU access 

parts of  the same array allocations simultaneously.



Dependency Analysis
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experimental lambda support
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Programming GPUs with compiler directives

GPU Programming
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Accelerators by directives

• CUDA can be low-level and closely coupled to the GPU

• With CUDA, the user needs to write specialist kernels:

- Hard to write and debug

- Hard to optimise for specific GPU

- Hard to maintain

+ Performance boost

+ Flexible

• Programming GPUs using directives could be an option if  the user 

already knows how to program parallel processors

• Knowledge of  thread synchronization mechanisms and contention 

avoidance techniques still required



Memory and Execution Models

Execution model:

• Concept of  an accelerator region

• Accelerator task tied to accelerator it starts on

• Complete at known locations, barriers, 

“acc_sync”, program exit

• Data motion directives provide hints to the 

compiler on where to place data that accelerator 

regions access



Examples

#pragma omp target device(0) map(tofrom:B)

#pragma omp teams num_teams(num_blocks) num_threads(bsize)

#pragma omp distribute

for (i=0; i<N; i += num_blocks)

#pragma omp parallel for

for (b = i; b < i+num_blocks; b++)

B[b] += sin(B[b]);
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#pragma acc parallel copy(B[0:N]) num_gangs(numblocks)\

vector_length(bsize)

#pragma acc loop gang vector

for (i=0; i<N; ++i) {

B[i] += sin(B[i]);

}

OpenMP 4.0

OpenACC



Libraries

GPU Programming
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Thrust

• Parallel algorithms and data structures

• Based on the standard C++

• Can perform different operations on the GPU like:

– Sort

– Scan

– Transform

– Reductions

• Easy to integrate in an existing software framework

• Implementation details invisible to the user

• Info: https://developer.nvidia.com/thrust
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https://developer.nvidia.com/thrust


Thrust samples
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Thrust samples (ctd.)
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ArrayFire

• Interface for C, C++, Java, R, Fortran

• Supports CUDA and OpenCL (NVIDIA GPUs, Xeon Phi, CPUs 

x86, ARM)

• API based on the concept of  Array

• Contains hundreds of  functions: arithmetic, linear algebra, 

statistics, signal processing, image processing, and related 

algorithms

• It can execute loop iterations in parallel with gfor
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http://www.arrayfire.com/docs/page_gfor.htm


ArrayFire sample

• gfor distributes all the iterations of  a for-loop to the GPU threads

for (int i = 0; i < n; ++i) 

A(i) = A(i) + 1;
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ArrayFire sample

• gfor distributes all the iterations of  a for-loop to the GPU threads

gfor (array i, n)

A(i) = A(i) + 1;

In HEP case, data would need to be 

transformed into Structures of arrays, in 

order to enable efficient parallelism and 

memory access pattern.
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Is there a place for GPUs in all this?

• At trigger level:

– Controlled environment

– High throughput density required

• On the WLCG:

– Software running on very different/diverse hardware

• Starting from Pentium 4 to Broadwell

– Today’s philosophy consists in “one size fit all”

• Legacy software runs on both legacy and new hardware

– Experiments  pushing to higher and higher data rates

– WLCG strategy: live within ~fixed  budgets

– Make better use of  resources: the approach is changing

• Power consumption is becoming a hot-spot in the total bill

– Especially in European Data Centers

• This will be even more important with the HL-LHC upgrade

– Cope with 2-3x the amount of  data
30



Deep Neural Networks @LHC

• Growing interest @CERN in Deep Neural Network applications for 

LHC experiments

• Assess data quality with trained algorithms (replacing as much as 

possible 24/7 shifts of  humans)

• Take fast decisions (keep or reject the event) @ trigger w/o having to 

reconstruct the full event (save fraction of  online CPU for other 

usages)

• Jet identification (see next slide)

• DNN training naturally happens on GPUs. Currently investigating the 

possibility of  creating O(50) GPU clusters @CERN

– give people access to GPUs for small-scale project

– will increase usage of  GPUs between experiment average “users”

– might serve as a seed for a larger cluster on the time scale of  HL-LHC (where 

DNN might become integrated in our standard reconstruction software)



Jet Imagining with DNN
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• A Jet is a shower of  stable particles initiated 
by an unstable jet “mother particle” (a quark, 
a gluon, a Higgs boson, etc)

• Jet tagging is the identification of  the nature 
of  the jet mother from the features of  the 
jet

• Normally, jets are 
– reconstructed with custom/physics-driven 

unsupervised algorithms (jet algorithms)

– identified with supervised ML algorithms (BDT, 
NN, …)

• Ongoing work to explore DNN, e.g. 
“recycling” progresses on image processing

• Growing interest in advanced DNN → 
Growing interest in having GPU clusters at 
hand for training

See DS@LHC Talk



PATATRACK
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Tracking at CMS

• Particles produced in the 

collisions leave traces (hits) as 

they fly through the detector

• The innermost detector of  CMS  

is called Tracker

• Tracking: the art of  associate 

each hit to the particle that left it 

• The collection of  all the hits left 

by the same particle in the 

tracker along with some 

additional information (e.g. 

momentum, charge) defines a 

track

• Pile-up: # of  p-p collisions per 

bunch crossing
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PATATRACK

• PATATRACK 

– It is a hybrid software to run on heterogeneous HPC platforms for emulating 

a GPU-based track trigger, data transfer and synchronization

• Tracker data partitioning

– Fast simulation on fast geometry and uniform magnetic field

– The information produced by the whole tracker cannot be processed by one 

GPU in a trigger environment

• However this is possible at HLT and Reconstruction stages

• Low-latency data transfers between network interfaces and multiple 

GPUs (GPU Direct)

• Parallel Algorithms

• Cellular Automaton executes completely in-cache for lowest latency
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Partitioning

• Tracks ~straight if  seen from a longitudinal perspective (z,R) plane

• Number of  tracks approx. uniform in h
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Partitioning (ctd.)

• Eta bins could have been treated independently

– Pile-up and longitudinal impact parameter (displacement of  the collision point 

along the z-axis) limit this hypothesis

– Area on the next layer that needs to be scanned for compatible Stubs searching 

not obvious
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Partitioning (ctd.)

• Simulation for different longitudinal impact parameters 

• Lists of  segments on subsequent layers evaluated beforehand

• Each streaming multiprocessor on a GPU is in charge of  one list
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In-Shared-Memory Cellular Automaton

Mondrian of  Life
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Input Data

• The input data required by the Cellular Automaton Algorithm is a array of  

stubs contained in a h-chain in a specific f-sector

• In order to minimize the number of  messages sent, this array-payload is 

wrapped around a custom communication protocol header

• This header contains :

– the ID of  the packet

– the size in # of  stubs

– the number of  layers contained in the packet

– the offset of  the first stub in a specific layer wrt to the beginning of  the payload
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• This packet is then passed as an array of  

MPI_BYTE type (a.k.a. unsigned char)

• Memory pre-allocated on the GPU to host 

a packet received from the NIC and loaded 

directly into the GPU global memory



Data movement without GPUDirect

• Stubs from each chain are sent to a different GPU Streaming 

Multiprocessor/different node where the kernel runs completely 

in shared memory 
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Data movement with GPUDirect

• GPUDirect accelerated communication with network and storage devices

• GPUDirect supports RDMA allowing latencies ~1us and link bandwidth 

~7GB/s
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Cell creations

• A Cell is a class containing information about:

– Two stubs

– Neighboring Cells on the following layers

– Neighboring Cells on the previous layers

• It can be constructed starting from a doublet of  Stubs with similar h

and f

• In principle, the creation of  Stubs can be executed in parallel:

– 1024 CUDA Threads are spawned (32 warps)

– Each warp takes one Stub on a layer and looks for a Stub in h-f window (in 

parallel in groups of  32)

– Every time a stub with similar eta/phi is found a new cell is created

– Shared memory for cells is pre-allocated

– Created cells are visible to all the threads
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Mitigating Branch Divergence
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Mitigating Branch Divergence
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Neighbor finding

• We have now a CUDAQueue that contains all the Cells

• Threads are now reshuffled

– each thread is now associated to a Cell independently of  the Cell’s layer

– If  two Cells have one Stub in common and their h and f are similar they are 

become Inner and Outer Neighbors one of  the other
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• This step will create a graph of  

interconnected Cells

• Now it’s time to play Game of  Life 

and make the graph evolve!
RR



Evolution

• In the evolution stage each thread is associated to one Cell

• In order for evolution to start all the Cells’ State is set to 0

• The number of  generations to evolve is set to (number of  layers – 2)

• At each time step, each thread:

– For each Cell, if  there is at least a outer neighbor sharing the same state, its state 

is  increasing by 1.
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T=0T=1T=2



Track building 
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• Now that the evolution stage has completed each thread checks 

whether its Cell is a Root Cell i.e.:

– It has no inner neighbor

– Its state is higher than a threshold

• Found Root Cells are hence pushed in a CUDAQueue

• Each thread is associated to a Root Cell and performs a recursive 

Depth First Search on the Cells Graph

– While traversing its trie, a thread adds a cell to a track if  the Cell state is 

decreasing



Tests and Results
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Wilkes - Acknowledgement

• Wilkes, technical specifications:

– 128 node Dell™ PowerEdge™ T620 

– Dual-Socket Hexa-Core Intel E5-2630 (1536 cores in total)

– 64 GByte memory per node

– Scientific Linux release 6.6 (Carbon)

– MLNX_OFED 2.4-1.0.4 SW stack

– Dual-rail Mellanox Connect-IB FDR InfiniBand

– NVIDIA® Tesla K20 GPUs (2 GPUs per node)

• Wilkes, facts:

– The UK’s fastest academic cluster, deployed November 2013 

– Specific design to allow GPU Direct over RDMA from both GPU within the node

– GPU LINPACK performance of  ~240 TF

– Ranked second in the worldwide Green500 ranking Nov 2013 (3,631.86 MFLOPS/W)
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Test Configuration
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Tests

• Detector divided in: 

– Trasversal section: 8 sectors, Df = p/2, each overlapping with the next one 

by p/4

– Longitudinal section: 8 sectors, Dh=0.8

• Requirements for the creation of  a Cell: Dh < 0.1, Df < 0.12

• Requirements for two cells to be neighbors: Dh < 0.1, Df < 0.12

• 40 p guns:

– 2 GeV < pT < 100 GeV

– -1 < h < +1

53



Results
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• The efficiency of  the algorithm could be improved by 

extending the neighbor search to the second next layer 

• Avg. efficiency: 0.81



Results
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• The efficiency of  the algorithm could be improved by 

extending the neighbor search to the second next layer 

• Avg. efficiency: 0.81



Results

• The fake rate could be reduced by adding further conditions to 

the formation of  the tracks, or by adding another step

• The duplicate rate is mainly due to the overlapping regions and 

can hence be reduced further
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Results (ctd.)
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• GPU Direct very promising

– Data transmitted between nodes with 

lowest latency

• Track Reconstruction highly 

dependent on the combinatorics

• Ping times are included (t ~3ms)



Conclusion

• PATATRACK framework developed as initial liaison between the 

HEP and HPC fields

– All the present efforts focused at single process on single node opportunistic 

use of  HPC infrastructures

• Communication, speed links and latencies already ready for the 

detectors of  the near future

– Gilder’s law still valid 

• High bandwidth memories and high capacities (tens of  GBs) would 

allow higher time buffers at the lowest stages of  the trigger

• Discussion with hardware producers to reduce latencies and better 

meet our needs
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Questions?
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Backup
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Branch Divergence

● Avoid frequent “phone calls” to the global memory and 

read/write the data locally as much as possible before updating 

global values

● Make use of  registers and shared memory for aggregating partial 

results

● Requires storage resources to keep copies of  data structures



CUDA Queue

template< int maxSize, class T>

struct CUDAQueue

{

__inline__ __device__

int push(const T& element) {

auto previousSize = atomicAdd(&m_size, 1);

if(previousSize<maxSize)

{

m_data[previousSize] = element;

return previousSize;

} else {

atomicSub(&m_size, 1);

return -1;

};
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