
Introduction to Introduction to
Parallel ProgrammingParallel Programming

Felice Pantaleo
Physics Department, CERN

felice@cern.ch

2

Heterogeneous computingHeterogeneous computing

Heterogeneous computing Heterogeneous computing
system: system:
● Best match for the jobBest match for the job
● Energy efficiency Energy efficiency
● Higher PerformanceHigher Performance

Lamborghini Huracán Display

3

Supercomputing systemsSupercomputing systems

● Achieve high computing power Achieve high computing power
● Dedicated to execute heavy computationDedicated to execute heavy computation
● Usually belong to big companies or research institutes Usually belong to big companies or research institutes
● Resources shared by using a batch queue systemResources shared by using a batch queue system

TITAN: 200 cabinets Cray XK7 – 18688 nodes – 17.5 PFLOPS TITAN: 200 cabinets Cray XK7 – 18688 nodes – 17.5 PFLOPS
(AMD Opteron 16 cores + NVIDIA Tesla K20)(AMD Opteron 16 cores + NVIDIA Tesla K20)

4

LINPACK & TOP500LINPACK & TOP500
LINPACK is a benchmark introduced in the '70s to LINPACK is a benchmark introduced in the '70s to
● Ease the choice of the best computer for a jobEase the choice of the best computer for a job
● Define the performance of a computer independently from the architectureDefine the performance of a computer independently from the architecture
● Consists in solving a dense system of linear equationsConsists in solving a dense system of linear equations
TOP500: list of the world 500 fastest supercomputers ranked accordingly to TOP500: list of the world 500 fastest supercomputers ranked accordingly to
LINPACK benchmarkLINPACK benchmark

5

Serial computationSerial computation
Software traditionally written for serial computationSoftware traditionally written for serial computation
● the sequence of instructions that forms the problem is the sequence of instructions that forms the problem is

executed by one Processing Unit (PU)executed by one Processing Unit (PU)
● every instruction has to wait for the previous one to be every instruction has to wait for the previous one to be

completed before its execution can startcompleted before its execution can start
● at any moment in time, only one instruction may executeat any moment in time, only one instruction may execute

6

Moore's LawMoore's Law
● Gordon Moore: “The performance Gordon Moore: “The performance

of microprocessors and the number of microprocessors and the number
of their transistors will double of their transistors will double
every 18 months”every 18 months”
Engineers found out that Engineers found out that
computation could be accelerated computation could be accelerated
by increasing the clock speed:by increasing the clock speed:
The march towards higher clock The march towards higher clock
frequencies started! frequencies started!

7

Moore's Law (ctd.)Moore's Law (ctd.)

8

Moore's Law (ctd.)Moore's Law (ctd.)

9

Moore's Law (ctd.)Moore's Law (ctd.)

10

Power WallPower Wall

Power∝C V 2 f
Reducing the voltage is not always possible: Reducing the voltage is not always possible:
● Faster clock rates sometimes demand higher voltageFaster clock rates sometimes demand higher voltage
● Higher voltage means less trouble due to random noiseHigher voltage means less trouble due to random noise
Many commercial chip manufacturers adopted a throughput Many commercial chip manufacturers adopted a throughput
oriented philosophy: oriented philosophy:
Increase the throughput of a number of programs running Increase the throughput of a number of programs running
concurrently.concurrently.
““The party isn't exactly over, but the police have arrived, and the The party isn't exactly over, but the police have arrived, and the
music has been turned way down” (P. Kogge)music has been turned way down” (P. Kogge)

11

Mitigating the Power WallMitigating the Power Wall

Intel Turbo Boost:Intel Turbo Boost:

12

Oven WallOven Wall

How many cooks does a pizzeria need to achieve the best How many cooks does a pizzeria need to achieve the best
production rate possible?production rate possible?

If all the ingredients are in the same fridge and there is only one If all the ingredients are in the same fridge and there is only one
oven? Maybe 1, 2, 64, infinity?oven? Maybe 1, 2, 64, infinity?

13

How many cooks does a pizzeria need to achieve the best How many cooks does a pizzeria need to achieve the best
production rate possible?production rate possible?

If all the ingredients are in the same fridge and there is only one If all the ingredients are in the same fridge and there is only one
oven? Maybe 1, 2, 64, infinity?oven? Maybe 1, 2, 64, infinity?

Memory WallMemory Wall

Contention of the memory bus:Contention of the memory bus:
How many cores do you need How many cores do you need
to accelerate the WhatsApp to accelerate the WhatsApp
client?client?

14

Mitigating the Memory WallMitigating the Memory Wall

● Reuse data and instructionsReuse data and instructions
● Move the data close to where the execution happensMove the data close to where the execution happens
● Increase the memory transfer speedIncrease the memory transfer speed
● Increase the amount of data to transferIncrease the amount of data to transfer
● Improve the pattern of access to memoryImprove the pattern of access to memory

Fortunately not all the applications are like WhatsApp ;-)Fortunately not all the applications are like WhatsApp ;-)

15

Embarrassingly parallel problemsEmbarrassingly parallel problems

y i= f i(xi)

16

Embarrassingly parallel problems (ctd.)Embarrassingly parallel problems (ctd.)

Workload can be divided into a number of independent Workload can be divided into a number of independent
sub-problems that can be processed by different PUssub-problems that can be processed by different PUs

17

Embarrassingly parallel problems (ctd.)Embarrassingly parallel problems (ctd.)

Examples:Examples:
● Linear AlgebraLinear Algebra
● Image ProcessingImage Processing
● Monte Carlo Simulation Monte Carlo Simulation
● BruteforceBruteforce
● Weather forecastWeather forecast
● Random number generationRandom number generation
● EncryptionEncryption
● Software compilationSoftware compilation

18

TerminologyTerminology
● GranularityGranularity: size of tasks: size of tasks
● SchedulingScheduling: order of assignment of tasks: order of assignment of tasks
● MappingMapping: assignment of tasks to a PU: assignment of tasks to a PU
● Load balancing: Load balancing: the art of making the computation of multiple tasks the art of making the computation of multiple tasks

end at the same timeend at the same time
● BarrierBarrier: a checkpoint at which all the threads should wait for the last : a checkpoint at which all the threads should wait for the last

one.one.
● SpeedupSpeedup: time of the parallel application/time of the serial application: time of the parallel application/time of the serial application
● EfficiencyEfficiency: Speedup/# of Pus: Speedup/# of Pus
● Race conditionRace condition: When the result of execution depends on sequence: When the result of execution depends on sequence

and/or timing of events. Result could be incorrect if this is not taken in and/or timing of events. Result could be incorrect if this is not taken in
considerationconsideration

● Critical sectionCritical section: Only one thread per time can enter.: Only one thread per time can enter.

19

Terminology (ctd.)Terminology (ctd.)

20

Flynn's TaxonomyFlynn's Taxonomy

Classification of computers describes four classes in both Classification of computers describes four classes in both
serial and parallel contexts:serial and parallel contexts:
● SISDSISD - - Single Instruction stream - Single Data streamSingle Instruction stream - Single Data stream

– A single processor computer that executes one stream of A single processor computer that executes one stream of
instructions on one set of data. Single-core processors belong instructions on one set of data. Single-core processors belong
to this class.to this class.

● SIMDSIMD - - Single Instruction Stream - Multiple Data streamSingle Instruction Stream - Multiple Data stream
– A multiprocessor where each processing unit executes the A multiprocessor where each processing unit executes the

same instruction stream as the others on its own set of data. same instruction stream as the others on its own set of data.
– A set of processors shares the same control unit, and their A set of processors shares the same control unit, and their

execution differs only by the different data elements each execution differs only by the different data elements each
processor operates on.processor operates on.

21

Flynn's Taxonomy (ctd.)Flynn's Taxonomy (ctd.)
● MISDMISD - - Multiple Instruction stream - Single Data Multiple Instruction stream - Single Data

streamstream
– Each processing element of the multiprocessor executes its Each processing element of the multiprocessor executes its

own instructions, but operates on a shared data set.own instructions, but operates on a shared data set.
● MIMDMIMD - - Multiple Instruction stream - Multiple Data Multiple Instruction stream - Multiple Data

streamstream
– Each processing element executes its own instruction Each processing element executes its own instruction

stream on its own set of data.stream on its own set of data.

22

Patterns for Parallel ProgrammingPatterns for Parallel Programming

23

ReduceReduce

Reduction is a very common pattern in parallel Reduction is a very common pattern in parallel
computing:computing:
● Large input data structure distributed across many PULarge input data structure distributed across many PU
● Each PU computes a tally of its inputEach PU computes a tally of its input
● These tally values are combined to produce the final These tally values are combined to produce the final

resultresult
Examples:Examples:
● The sum of the elements of an arrayThe sum of the elements of an array
● The maximum/minimum element of an arrayThe maximum/minimum element of an array
● Find the first occurrence of Find the first occurrence of x x in an arrayin an array

24

count3s count3s

Parallel programming is not easy: Parallel programming is not easy:
● Trivial problems like counting the number of “3”s in Trivial problems like counting the number of “3”s in

an array can hide many trapsan array can hide many traps

25

count3s (ctd.) count3s (ctd.)

26

Data HazardsData Hazards

Threads within a process share the same address space but Threads within a process share the same address space but
not their execution stacknot their execution stack
Pro: Pro: Threads can communicate using shared memoryThreads can communicate using shared memory
Cons: Cons: Data Hazards if threads are not synchronizedData Hazards if threads are not synchronized
Data hazards usually occur when threads modify data in Data hazards usually occur when threads modify data in
different points in the instruction pipeline and the order different points in the instruction pipeline and the order
of reading and writing operation matters (data of reading and writing operation matters (data
dependence)dependence)
● Read-After-Write (RAW)Read-After-Write (RAW)
● Write-After-Read (WAR)Write-After-Read (WAR)
● Write-After-Write (WAW)Write-After-Write (WAW)

27

Data HazardsData Hazards

Overlooking data hazards can lead to the corruption of Overlooking data hazards can lead to the corruption of
the shared state (race conditions)the shared state (race conditions)
TTricky to debug since the result depends on the timing ricky to debug since the result depends on the timing
between concurrent threads: between concurrent threads: unpredictable!unpredictable!

When a piece of code is clean of data hazards, it is said to When a piece of code is clean of data hazards, it is said to
be be thread-safethread-safe..
The easiest ways to avoid conflicts in critical sections is to The easiest ways to avoid conflicts in critical sections is to
grant access one thread at a time: grant access one thread at a time: mutexmutex (mutual (mutual
exclusion)exclusion)

28

MutexMutex

29

count3s timingcount3s timing

30

Data HazardsData Hazards

Overlooking data hazards can lead to the corruption of the Overlooking data hazards can lead to the corruption of the
shared state (race condition)shared state (race condition)
Tricky to debug since the result depends on the timing between Tricky to debug since the result depends on the timing between
concurrent threads: unpredictable!concurrent threads: unpredictable!
When a piece of code is clean of data hazards, it is said to be When a piece of code is clean of data hazards, it is said to be
thread-safe.thread-safe.
The easiest ways to avoid conflicts in critical sections is to grant The easiest ways to avoid conflicts in critical sections is to grant
access one thread at a time: access one thread at a time: mutexmutex (mutual exclusion) (mutual exclusion)

31

GranularityGranularity

32

GranularityGranularity

The T=8 version does not take half of the time w.r.t. The T=8 version does not take half of the time w.r.t.
T=4... Why?T=4... Why?

33

Amdahl's LawAmdahl's Law

The maximum theoretical throughput is limited by The maximum theoretical throughput is limited by
Amdahl's Law:Amdahl's Law:
● Every program contains a serial partEvery program contains a serial part
● Only one PU can execute the serial partOnly one PU can execute the serial part
● The speedup using The speedup using p p PUs PUs is given byis given by

● If If ff is the fraction of the program that runs serially, the is the fraction of the program that runs serially, the

parallel execution time is given by: parallel execution time is given by:

34

Amdahl's Law (ctd.)Amdahl's Law (ctd.)
● The speedup becomes: The speedup becomes:

● And the maximum possible speedup for infinite PUsAnd the maximum possible speedup for infinite PUs

35

Amdahl's Law (ctd.)Amdahl's Law (ctd.)

36

Mitigating Amdahl's LawMitigating Amdahl's Law
● Many times, the increase of the size of a problem does not correspond Many times, the increase of the size of a problem does not correspond

to a growth of the sequential partto a growth of the sequential part
● Increase the size of the problem to increase the opportunities for Increase the size of the problem to increase the opportunities for

parallelizationparallelization
Gustafson's Law:Gustafson's Law:

● In the hypothesis above:In the hypothesis above:

It's still worth to learn parallel computing: computations involving It's still worth to learn parallel computing: computations involving
arbitrarily large data sets can be efficiently parallelized!arbitrarily large data sets can be efficiently parallelized!

37

ConclusionConclusion
Parallel computing becomes useful when:Parallel computing becomes useful when:
● The solution to our problem takes too much time The solution to our problem takes too much time

(Amdahl's Law)(Amdahl's Law)
● The size of our problem is big (Gustafson's Law)The size of our problem is big (Gustafson's Law)
● The solution of our problems is poor, we would like to The solution of our problems is poor, we would like to

have a have a better onebetter one
Three steps to a better parallel software:Three steps to a better parallel software:

1.1.Restructure the mathematical formulationRestructure the mathematical formulation
2.2.Innovate at the algorithm level Innovate at the algorithm level
3.3.Tune core software for the specific architectureTune core software for the specific architecture

38

Think, think, think!Think, think, think!
● Think about the problem you are trying to solveThink about the problem you are trying to solve
● Understand the structure of the problemUnderstand the structure of the problem
● Apply mathematical techniques to find solutionApply mathematical techniques to find solution
● Map the problem to an algorithmic approachMap the problem to an algorithmic approach
● Plan the structure of computationPlan the structure of computation

– Be aware of in/dependence, interactions, bottlenecksBe aware of in/dependence, interactions, bottlenecks
● Plan the organization of dataPlan the organization of data

– Be explicitly aware of locality, and minimize global dataBe explicitly aware of locality, and minimize global data
● Finally, write some code! (this is the easy part ;-])Finally, write some code! (this is the easy part ;-])

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	page7 (1)
	page7 (2)
	page7 (3)
	Slide 10
	Slide 11
	page10 (1)
	page10 (2)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

