Introduction to
Parallel Programming

Felice Pantaleo

Physics Department, CERN

felice@cern.ch

Heterogeneous:ecomputing

Lamborghini Huracdn Display
' I S o

Heterogeneous computing
system:

o Best match for the job
o Energy efhciency

 Higher Performance

NAS

Supercomputing systemis &N

\ -

TITAN: 200 cabinets Cray XK7 — 18688 nodes — 17.5 PFLOPS
(AMD Opteron 16 cores + NVIDIA Tesla K20)

o Achieve high computing power
 Dedicated to execute heavy computation
o Usually belong to big companies or research institutes

 Resources shared by using a batch queue system

LINPACK: & TOP500

L

LINPACK is a benchmark introduced in the '70s to

o Ease the choice of the best computer for a job

o Define the performance of a computer independently from the architecture

o Consists in solving a dense system of linear equations

TOP500: list of the world 500 fastest supercomputers ranked accordingly to
LINPACK benchmark

Rank

1

(2

=lte

Mational Super Computer Center in
Guangzhou
China

DOE/SC/Oak Ridge Mational Laboratory
United States

DOE/NNSA/LLMNL
United States

RIKEN Advanced Institute for
Computational Science (AICS)
Japan

DOE/SC/Argonne Mational Laboratory
United States

System Cores

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel 3120000
Xeon E3-2692 12C 2.200GHz, TH Express-2, Intel

Xeon Phi 3151F

NUDT

Titan - Cray XK7 , Opteron 8274 16C 2.200GHz, Cray 560840
Gemini interconnect, NVIDIA K20x
Cray Inc.

Sequola - BlueGene/Q, Power BQC 16C 1.80 GHz, 1572864
Custom
IBM

K computer, SPARCE4 VIIfx 2.0GHz, Tofu interconnect 703024

Fujitsu

Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom 786432
IBM

Rmax
(TElop/s)

J3862.7

17390.0

17173.2

10510.0

8586.6

Rpeak
(TFlop/s)

S4902.4

27112.5

201327

11280.4

10066.3

-

FOWer
(kW)

17808

8209

7890

12660

3943

Serial computation
X)

\ -

Software traditionally written for serial computation

o the sequence of instructions that forms the problem is
executed by one Processing Unit (PU)

e every instruction has to wait for the previous one to be
completed before its execution can start

e at any moment in time, only one instruction may execute

Problem

'

Moore's Law

» Gordon Moore: “The performance
of microprocessors and the number
of their transistors will double
every 18 months”

Engineers found out that
computation could be accelerated
by increasing the clock speed:

'The march towards higher clock

frequencies started!

= —
— e Wi

1

10000000 e

Ih: Transistors (1000)
Transistors (fit)
1000000 4+ Clock Speed (MHz)
Max TDP (W)
i_ Cache (MB)

100000

10000

1000

100

10

0.1

1971 19574 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010

Moore's-Law (ctd.)

10000000

1000000

100000

10000

1000

100

10

i

0.1 +—— A ————————— . oemeew
1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010

10000000 e
® Transistors (1000)
Transistors (fit)
1000000 + Clock Speed (MHz)
Max TDP (W)
o Cache (MB)
100000 5 '
10000
1000
100
10
1
0.1

1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010

Power Wall ‘

PowercC V*°f

Reducing the voltage is not always possible:
o Faster clock rates sometimes demand higher voltage
» Higher voltage means less trouble due to random noise

Many commercial chip manufacturers adopted a throughput
oriented philosophy:

Increase the throughput of a number of programs running
concurrently.

“The party isn't exactly over, but the police have arrived, and the
music has been turned way down” (P Kogge)

10

“Next Gen
Turbo Boost”-

EITDPSH]

Sleep or
Low power!’

¥
=

After idle periods, the system
accumulates “energy budget”
and can accommodate high
power/performance for a few
seconds

In Steady State conditions the
power stabilizes on TDP

Use
accumulated

energy budget
to enhance user
experience

Buildup th

ermal budget

during idle periods

»Time

11

Oven Wall

How many cooks does a pizzeria need to achieve the best
production rate possible?

If all the ingredients are in the same fridge and there is only one
oven? Maybe 1, 2, 64, infinity? -

12

Memory Wall

How many cooks does a pizzeria need to achieve the best
production rate possible?

If all the ingredients are in the same fridge and there is only one
oven? Maybe 1, 2, 64, infinity? |

Contention of the memory bus:

How many cores do you need
to accelerate the WhatsApp

client?

13

e Reuse data and instructions

e Move the data close to where the execution happens
o Increase the memory transfer speed

e Increase the amount of data to transfer

« Improve the pattern of access to memory

Fortunately not all the applications are like WhatsApp ;-)

14

Embarraséingly parallel problems ’

yi:fi<xi>

() () (2 () () () () () ()
15

Embarrass‘i.n‘g‘ly parallel-problems (ctd.‘))/

Workload can be divided into a number of independent
sub-problems that can be processed by difterent PUs

Problem

16

Embarrassmgly parallel problems (ctd.) @

Examples:

o Linear Algebra

e Image Processing

e Monte Carlo Simulation

e Bruteforce

e Weather forecast

« Random number generation
e Encryption

o Software compilation

17

Terminology

Granularity: size of tasks
Scheduling: order of assignment of tasks
Mapping: assignment of tasks to a PU

Load balancing: the art of making the computation of multiple tasks
end at the same time

Barrier: a checkpoint at which all the threads should wait for the last
one.

Speedup: time of the parallel application/time of the serial application
Efficiency: Speedup/# of Pus
Race condition: When the result of execution depends on sequence

and/or timing of events. Result could be incorrect if this is not taken in
consideration

Critical section: Only one thread per time can enter.

18

19

Flynn's Taxonomy;

Classification of computers describes four classes in both
serial and parallel contexts:

o SISD - Single Instruction stream - Single Data stream

— A single processor computer that executes one stream of
instructions on one set of data. Single-core processors belong
to this class.

o SIMD - Single Instruction Stream - Multiple Data stream

— A multiprocessor where each processing unit executes the
same instruction stream as the others on its own set of data.

— A set of processors shares the same control unit, and their
execution differs only by the different data elements each
processor operates on.

20

Elynn's TdXoﬁomy (ctd:)

o MISD - Multiple Instruction stream - Single Data

Stream

— Each processing element of the multiprocessor executes its
own instructions, but operates on a shared data set.

o MIMD - Multiple Instruction stream - Multiple Data

stream

— Each processing element executes its own instruction
stream on its own set of data.

21

Patternsfor Parallel Programming 7

e

/ v \.

[Organize } Organize by [Organize by }
;{ Ta< /Data\ E?ta F|(J\W
| Linear Recursive Linear F{ecurswe Regular ; Irregular |

k J L J ¥ L J L J L 2

i ™ '\I i ™
Task Divide and Geometric Recursive Pineline Event Driven
_Parallelism Conquer | |Decomposition Data P

h . .y

Mattson, Sanders, Massingill, Patterns for Parallel Programming

22

Reduction is a very common pattern in parallel
computing:

o Large input data structure distributed across many PU

o Each PU computes a tally of its input

o 'These tally values are combined to produce the final
result

Examples:

The sum of the elements of an array

l =

The maximum/minimum element of an array

o Find the first occurrence of x in an array

23

count3ds-

Parallel programming is not easy:
o Trivial problems like counting the number of “3”s in
an array can hide many traps

1Nt *
1Nt

y ,
int count3s(){

int 1;
count = 0;

for (i=0;idlength;i++){
if (3 == arrayli])i
count++;
3 /¥ end if ¥/

3 /% end for 1 X/

return count; 24

} /% end count3s X/

count3s-(ctd.)

int * -

1nt s nt, t; /% t is number of threads */

int count3s(){

5 b il O
count = 0O}

¥ thread t threads */
for (i=0;i<t; i++){
thread_create({count3s_thread,i); /% prog. to execute; thread_ID */

3

return count,;
}/% end count3s */

void count3s_thread(int id){

Nt 1
int = length/t;
int = 1d*length_per_thread;

for (i=start;i{start+length_per_thread;i++){
if (3 == arraylil){
count++;
} /% end 1f */
} /% end for i */

return ECILII"It.;
} /¥ end countis_thread */

25

Data Hazi‘rdg

Threads within a process share the same address space but
not their execution stack

Pro: Threads can communicate using shared memory
Cons: Data Hazards if threads are not synchronized

Data hazards usually occur when threads modify data in
different points in the instruction pipeline and the order
of reading and writing operation matters (data

dependence)
e Read-After-Write (RAW)

o Write-After-Read (WAR)
o Write-After-Write (WAW)

26

Data Hazi‘rdg

Overlooking data hazards can lead to the corruption of
the shared state (race conditions)

Tricky to debug since the result depends on the timing
between concurrent threads: unpredictable!

When a piece of code is clean of data hazards, it is said to

be thread-safe.

The easiest ways to avoid conflicts in critical sections is to
y [)

grant access one thread at a time: mutex (mutual

exclusion)

27

vold count3s_thread(int

) €

1NE
int tl d = length/t;
int start = i1d¥length_per_thread;

for (i=start;id{(start+length_per_thread;i++){

if (3 == arraylil)t
mutex_lock(m) ;
count++;
mutex_unlock(m) ;
3 /¥ end 1f */
} /% end for 1 */

return count,;

3} /* end count3s_thread */

28

count3s-timing

12

10

Time (seconds)
)

0.45273

— —T—

Serial time

2.1289

T=1

6.3515

T=2

10.049

5.9804

T=4 T=8

29

I)arafflazird§

Overlooking data hazards can lead to the corruption of the
shared state (race condition)

Tricky to debug since the result depends on the timing between
concurrent threads: unpredictable!

When a piece of code is clean of data hazards, it is said to be
thread-safe.

The easiest ways to avoid conflicts in critical sections is to grant
access one thread at a time: mutex (mutual exclusion)

‘Thread 0 +1 +1

RO

Thread 1| (B 30

Granularity-

private_count[maxThreads];
mutex m;

void count3s_thread(int id){

3Nt A
int ‘ | = length/t;
1Nt - = 1d¥*length_per_thread,;

for (i=start;id{start+length_per_thread;i++)1{
if (3 == arrayl[i])f{
private_count[id]++;
3 /¥ end if X/
} /% end for 1 */

mutex_lockim) ;
count += private_count[id];
mutex_unlock(m) ;

3 /% end count3s_thread */

31

Granularif‘y

05 0.49804
0.45273

O
o

0.27993

Time (seconds)
-
w

T
1
1

0.14763 0.14352

o

Serial time T=1 T=2 T=4 =8

I

The T=8 version does not take half of the time w.r.t.
T=4... Why?

32

Amdahl's La\:ir

'The maximum theoretical throughput is limited by

Amdahl's Law:
 Every program contains a serial part
e Only one PU can execute the serial part

o The speedup using p PUs is given by

o If f is the fraction of the program that runs serially, the
parallel execution time is given by:

fTot (1=)T, = T, + 5555

p 33

Amdahl’s LaW (Ctd)

o The speedup becomes:

S(p: f) i fTS | (_1_f)Ts

e And the maximum possible speedup for infinite PUs

¢ b 1
maxr — [: - — = —
T Wi = e =

34

Speedup

20.00

18.00

16.00

14.00

12.00

10.00

4.00

2.00

0.00

Amdahl’s Law

s
. all /T

of Processing Units

/f Parallel Fraction
. 50%
// — %
90%
// O R
/ |
/ =
f
/A |
/ //
VZ
-
—
o
T © © © ¥ @ @ o =T W © ™o T
- 2 @ 28 5 8 & 8 2 8 B

65536

35

Mitigati-ngAﬁldahl's Law

» Many times, the increase of the size of a problem does not correspond

to a growth of the sequential part

o Increase the size of the problem to increase the opportunities for
parallelization

Gustafson's Law:

S(n) = f(n) +pll = f(n)]
o In the hypothesis above:

Simaz = lim S(n) =p

n—oo

It's still worth to learn parallel computing: computations involving
arbitrarily large data sets can be efhiciently parallelized!

36

Conclusion

Paral

(Amdahl's Law)

'The size of our prob!

r

The solution of our
have a better one

_lelcomputing becomes useful when:

The solution to our problem takes too much time

em is big (Gustatson's Law)

problems is poor, we would like to

Three steps to a better parallel software:

1.Restructure the mathematical formulation

2.Innovate at the algorithm level

3.Tune core software for the specific architecture

37

Think about the problem you are trying to solve

Understand the structure of the problem
Apply mathematical techniques to find solution
Map the problem to an algorithmic approach

Plan the structure of computation

— Be aware of in/dependence, interactions, bottlenecks
Plan the organization of data

— Be explicitly aware of locality, and minimize global data

Finally, write some code! (this is the easy part ;-])

38

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	page7 (1)
	page7 (2)
	page7 (3)
	Slide 10
	Slide 11
	page10 (1)
	page10 (2)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

