Introduction to Parallel Programming

Felice Pantaleo
Physics Department, CERN

felice@cern.ch
Heterogeneous computing system:
- Best match for the job
- Energy efficiency
- Higher Performance
Supercomputing systems

TITAN: 200 cabinets Cray XK7 – 18688 nodes – 17.5 PFLOPS
(AMD Opteron 16 cores + NVIDIA Tesla K20)

- Achieve high computing power
- Dedicated to execute heavy computation
- Usually belong to big companies or research institutes
- Resources shared by using a batch queue system
LINPACK is a benchmark introduced in the '70s to

- Ease the choice of the best computer for a job
- Define the performance of a computer independently from the architecture
- Consists in solving a dense system of linear equations

TOP500: list of the world 500 fastest supercomputers ranked accordingly to LINPACK benchmark

<table>
<thead>
<tr>
<th>Rank</th>
<th>Site</th>
<th>System</th>
<th>Cores</th>
<th>Rmax (TFlop/s)</th>
<th>Rpeak (TFlop/s)</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>National Super Computer Center in Guangzhou, China</td>
<td>Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT</td>
<td>3120000</td>
<td>33862.7</td>
<td>54902.4</td>
<td>17808</td>
</tr>
<tr>
<td>2</td>
<td>DOE/SC/Oak Ridge National Laboratory, United States</td>
<td>Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.</td>
<td>560640</td>
<td>17590.0</td>
<td>27112.5</td>
<td>8209</td>
</tr>
<tr>
<td>3</td>
<td>DOE/NNSA/LLNL, United States</td>
<td>Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM</td>
<td>1572864</td>
<td>17173.2</td>
<td>20132.7</td>
<td>7890</td>
</tr>
<tr>
<td>4</td>
<td>RIKEN Advanced Institute for Computational Science (AICS), Japan</td>
<td>K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu</td>
<td>705024</td>
<td>10510.0</td>
<td>11280.4</td>
<td>12660</td>
</tr>
<tr>
<td>5</td>
<td>DOE/SC/Argonne National Laboratory, United States</td>
<td>Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM</td>
<td>786432</td>
<td>8586.6</td>
<td>10066.3</td>
<td>3945</td>
</tr>
</tbody>
</table>
Serial computation

Software traditionally written for serial computation

- the sequence of instructions that forms the problem is executed by one Processing Unit (PU)
- every instruction has to wait for the previous one to be completed before its execution can start
- at any moment in time, only one instruction may execute

Problem

\[t_{10} \rightarrow t_9 \rightarrow t_8 \rightarrow t_7 \rightarrow t_6 \rightarrow t_5 \rightarrow t_4 \rightarrow t_3 \rightarrow t_2 \rightarrow t_1 \rightarrow t_0 \rightarrow PU \]
Moore's Law

- Gordon Moore: “The performance of microprocessors and the number of their transistors will double every 18 months”

Engineers found out that computation could be accelerated by increasing the clock speed:

The march towards higher clock frequencies started!
Moore's Law (ctd.)

![Intel Processor features graph](image.png)
Moore's Law (ctd.)
Moore's Law (ctd.)
Power Wall

Power \propto C V^2 f

Reducing the voltage is not always possible:

- Faster clock rates sometimes demand higher voltage
- Higher voltage means less trouble due to random noise

Many commercial chip manufacturers adopted a throughput oriented philosophy:

Increase the throughput of a number of programs running concurrently.

“The party isn't exactly over, but the police have arrived, and the music has been turned way down” (P. Kogge)
Mitigating the Power Wall

Intel Turbo Boost:

After idle periods, the system accumulates “energy budget” and can accommodate high power/performance for a few seconds.

In Steady State conditions the power stabilizes on TDP.

Use accumulated energy budget to enhance user experience.
How many cooks does a pizzeria need to achieve the best production rate possible?

If all the ingredients are in the same fridge and there is only one oven? Maybe 1, 2, 64, infinity?
How many cooks does a pizzeria need to achieve the best production rate possible?

If all the ingredients are in the same fridge and there is only one oven? Maybe 1, 2, 64, infinity?

Contention of the memory bus:
How many cores do you need to accelerate the WhatsApp client?
Mitigating the Memory Wall

- Reuse data and instructions
- Move the data close to where the execution happens
- Increase the memory transfer speed
- Increase the amount of data to transfer
- Improve the pattern of access to memory

Fortunately not all the applications are like WhatsApp ;-)

Embarrassingly parallel problems

\[y_i = f_i(x_i) \]
Embarrassingly parallel problems (ctd.)

Workload can be divided into a number of independent sub-problems that can be processed by different PUs.
Examples:

- Linear Algebra
- Image Processing
- Monte Carlo Simulation
- Bruteforce
- Weather forecast
- Random number generation
- Encryption
- Software compilation
Terminology

- **Granularity**: size of tasks
- **Scheduling**: order of assignment of tasks
- **Mapping**: assignment of tasks to a PU
- **Load balancing**: the art of making the computation of multiple tasks end at the same time
- **Barrier**: a checkpoint at which all the threads should wait for the last one.
- **Speedup**: time of the parallel application/time of the serial application
- **Efficiency**: Speedup/# of Pus
- **Race condition**: When the result of execution depends on sequence and/or timing of events. Result could be incorrect if this is not taken in consideration
- **Critical section**: Only one thread per time can enter.
Terminology (ctd.)

Problem

\[t_5 \quad t_4 \quad t_3 \quad t_2 \quad t_1 \quad t_0 \]

\[\text{PU}_0 \]

\[\text{PU}_1 \]
Flynn's Taxonomy

Classification of computers describes four classes in both serial and parallel contexts:

- **SISD** - *Single Instruction stream - Single Data stream*
 - A single processor computer that executes one stream of instructions on one set of data. Single-core processors belong to this class.

- **SIMD** - *Single Instruction Stream - Multiple Data stream*
 - A multiprocessor where each processing unit executes the same instruction stream as the others on its own set of data.
 - A set of processors shares the same control unit, and their execution differs only by the different data elements each processor operates on.
Flynn's Taxonomy (ctd.)

- **MISD - Multiple Instruction stream - Single Data stream**
 - Each processing element of the multiprocessor executes its own instructions, but operates on a shared data set.

- **MIMD - Multiple Instruction stream - Multiple Data stream**
 - Each processing element executes its own instruction stream on its own set of data.
Patterns for Parallel Programming

Start

Organize by Task
- Linear
 - Task Parallelism
- Recursive
 - Divide and Conquer

Organize by Data
- Linear
 - Geometric Decomposition
- Recursive
 - Recursive Data

Organize by Data Flow
- Regular
 - Pipeline
- Irregular
 - Event Driven

Mattson, Sanders, Massingill, *Patterns for Parallel Programming*
Reduction is a very common pattern in parallel computing:

- Large input data structure distributed across many PU
- Each PU computes a tally of its input
- These tally values are combined to produce the final result

Examples:

- The sum of the elements of an array
- The maximum/minimum element of an array
- Find the first occurrence of x in an array
Parallel programming is not easy:

- Trivial problems like counting the number of “3”s in an array can hide many traps

```c
int *array;
int length, count;

int count3s()
{
    int i;
    count = 0;

    for (i=0; i<length; i++){
        if (3 == array[i]){
            count++;
        }
    }

    return count;
}
```
```c
int *array;
int length, count, t; /* t is number of threads */

int count3s()
{
    int i;
    count = 0;

    /* thread t threads */
    for (i=0; i<t; i++)
    {
        thread_create(count3s_thread,i); /* prog. to execute; thread_ID */
    }

    return count;
} /* end count3s */

void count3s_thread(int id)
{
    int i;
    int length_per_thread = length/t;
    int start = id*length_per_thread;

    for (i=start; i<start+length_per_thread; i++)
    {
        if (3 == array[i])
        {
            count++;
        } /* end if */
    } /* end for i */

    return count;
} /* end count3s_thread */
```
Data Hazards

Threads within a process share the same address space but not their execution stack

Pro: Threads can communicate using shared memory

Cons: Data Hazards if threads are not synchronized

Data hazards usually occur when threads modify data in different points in the instruction pipeline and the order of reading and writing operation matters (data dependence)

- Read-After-Write (RAW)
- Write-After-Read (WAR)
- Write-After-Write (WAW)
Overlooking data hazards can lead to the corruption of the shared state (race conditions)

Tricky to debug since the result depends on the timing between concurrent threads: *unpredictable!*

When a piece of code is clean of data hazards, it is said to be *thread-safe*.

The easiest ways to avoid conflicts in critical sections is to grant access one thread at a time: *mutex* (mutual exclusion)
void count3s_thread(int id){
 int i;
 int length_per_thread = length/t;
 int start = id*length_per_thread;

 for (i=start;i<(start+length_per_thread);i++){
 if (3 == array[i]){
 mutex_lock(m);
 count++;
 mutex_unlock(m);
 } /* end if */
 } /* end for i */

 return count;
} /* end count3s_thread */
count3s timing

![Graph showing timing results for different thread counts (T). The y-axis represents time in seconds, and the x-axis represents thread count (T=1, T=2, T=4, T=8). The results are as follows: Serial time = 0.45273 seconds, T=1 = 2.1289 seconds, T=2 = 6.3515 seconds, T=4 = 10.049 seconds, and T=8 = 5.9804 seconds.]
Data Hazards

Overlooking data hazards can lead to the corruption of the shared state (race condition)

Tricky to debug since the result depends on the timing between concurrent threads: unpredictable!

When a piece of code is clean of data hazards, it is said to be thread-safe.

The easiest ways to avoid conflicts in critical sections is to grant access one thread at a time: *mutex* (mutual exclusion)
private_count[maxThreads];
mutex m;

void count3s_thread(int id){
 int i;
 int length_per_thread = length/t;
 int start = id*length_per_thread;

 for (i=start;i<start+length_per_thread;i++){
 if (3 == array[i]){
 private_count[id]++;
 } /* end if */
 } /* end for i */

 mutex_lock(m);
 count += private_count[id];
 mutex_unlock(m);
} /* end count3s_thread */
The T=8 version does not take half of the time w.r.t. T=4... Why?
Amdahl's Law

The maximum theoretical throughput is limited by Amdahl's Law:

- Every program contains a serial part
- Only one PU can execute the serial part
- The speedup using p PUs is given by

$$S(p) = \frac{T_s}{T_p}$$

- If f is the fraction of the program that runs serially, the parallel execution time is given by:

$$fT_s + (1 - f)T_p = fT_s + \frac{(1-f)T_s}{p}$$
Amdahl's Law (ctd.)

- The speedup becomes:

\[S(p, f) = \frac{T_s}{fT_s + \frac{(1-f)T_s}{p}} \]

- And the maximum possible speedup for infinite PUs

\[S_{max} \equiv \lim_{p \to \infty} S(p, f) = \frac{T_s}{f \cdot T_s} = \frac{1}{f} \]
Mitigating Amdahl's Law

- Many times, the increase of the size of a problem does not correspond to a growth of the sequential part.
- Increase the size of the problem to increase the opportunities for parallelization.

Gustafson's Law:

\[S(n) = f(n) + p[1 - f(n)] \]

- In the hypothesis above:

\[S_{max} \equiv \lim_{n \to \infty} S(n) = p \]

It's still worth to learn parallel computing: computations involving arbitrarily large data sets can be efficiently parallelized!
Conclusion

Parallel computing becomes useful when:

- The solution to our problem takes too much time (Amdahl's Law)
- The size of our problem is big (Gustafson's Law)
- The solution of our problems is poor, we would like to have a better one

Three steps to a better parallel software:

1. Restructure the mathematical formulation
2. Innovate at the algorithm level
3. Tune core software for the specific architecture
Think, think, think!

- Think about the problem you are trying to solve
- Understand the structure of the problem
- Apply mathematical techniques to find solution
- Map the problem to an algorithmic approach
- Plan the structure of computation
 - Be aware of in/dependence, interactions, bottlenecks
- Plan the organization of data
 - Be explicitly aware of locality, and minimize global data
- Finally, write some code! (this is the easy part ;-))