

Measurement of the Branching Fraction ($B^0/\overline{B}^0 \rightarrow pp\overline{pp}$) @ BaBar and prospects @ Belle II

Laura Zani

INFN – University of Pisa

Master Thesis Project

BelleII Padova - 30th May 2016

Outline

- Motivation
- Status of analysis
- Prospects @ Belle II
- Outlook

Motivation

1) B → *baryons* puzzle

- Inclusive: total fraction of B decays to baryons was measured in 1992 by ARGUS, (6.8±0.6)% (avg. B^o, B⁺)
- Exclusive: many channels have been studied, sum only (0.53±0.06)% B^o, (0.85±0.15)% B⁺
 Puzzle unsolved!

Motivation

2) Strong Interaction

• Large B mass \rightarrow large **spectrum** of baryons, different flavors

 $(b \rightarrow cX \text{ dominant weak decay}, \text{ final states with charmed baryons and mesons are enhanced};$

- Better understanding of **hadronisation** into baryons $(q\overline{q} pairs produced out of vacuum, similar to jet$ **fragmentation**)
 - theoretical models (pole model, QCD sum rule) are only qualitatively understood.

• Features

(1) Branching Fractions increase with multiplicity of final states;

(2) Baryon-antibaryon mass threshold enhancement (especially in three-body decays, it explains the enhanced rate and the dibaryon mass distribution → see Backup Slides)

BelleII Padova - 30th May 2016

Previous Results @ BaBar

- (Gruenberg et al., 2014) <u>http://dx.doi.org/10.1103/PhysRevD.89.071102</u> Measured upper limit for $\mathfrak{B}(\overline{B^0} \rightarrow \Lambda_c^+ p \overline{p} \overline{p})$: 2.8x10⁻⁶ @0.90 CL
- Useful for rough estimate of $\mathfrak{B}(B^0 \rightarrow p p \overline{p} \overline{p})$, only considering Cabibbo suppression:

 $\mathfrak{B}(B^{0} \rightarrow p \, \overline{p} \, \overline{p} \, \overline{p}) \sim |V_{ub} / V_{cb}|^{2} \cdot \mathfrak{B}(\overline{B}^{0} \rightarrow \Lambda_{c}^{+}p \, \overline{p} \, \overline{p} \, \overline{p}) \sim 0.01 \cdot \mathfrak{B}(\overline{B}^{0} \rightarrow \Lambda_{c}^{+}p \, \overline{p} \, \overline{p} \, \overline{p})$ $) \sim 10^{-8}$

It might be enhanced by Phase Space contribution (→ See table in slide 6)

Why $B^0 \rightarrow p p \overline{p} \overline{p}$?

- 4 Baryon Final State

Apart from Gruenberg study, it is the only baryonic channel with such baryon mulitplicity to be analysed

- There is still no Upper Limit on PDG...

Status of analysis: Expected BF

MODE	$\overline{B}^{0} \rightarrow \Lambda_{c}^{+} p \overline{p} \overline{p}$	$B^0 \rightarrow p p \overline{p} \overline{p}$	Scaling factor $BF(\underline{B}^{0} \rightarrow p p \overline{p} \overline{p} \overline{p})/$ $BF(\overline{B}^{0} \rightarrow \Lambda_{c}^{+} p \overline{p} \overline{p})$
Weak Interaction	$b \rightarrow c$ $V_{cb} = (40.6 \pm 1.3) \times 10^{-3}$	b → u V _{ub} = (3.89 ± 0.44)x10 ⁻³	0.1 ² =0.01
Phase Space	• Heavier mass for Λ_c^+ ($M_B^-3m_p^-m_A^\sim 0.186 \text{ GeV}$)	• Lower mass for proton, $(M_B^{}-4m_p^{} \sim 1.52 \text{ GeV})$	1.52/0.186 ~8.2 (assuming phase space element goes linearly with energy, further investigation needed)
Reconstruction efficiency	• Only $\Lambda_c^+ \rightarrow p K \pi$ has been reconstructed • BF ~ 5% of all Λ_c^+ • $\epsilon = (3.5 \pm 0.1) \%$	 Good tracking of protons with momenta > 100 MeV ε ~ 35 % 	~10

→ Working hypothesis: assumed BF($B^0 \rightarrow p p \overline{p} \overline{p}$) ~ 10⁻⁷

Status of analysis: Event Reconstruction

MC & Data Samples:

- Signal MC : official request for SP-11894 mode complete, 687 000 events produced (decay model: Phase Space);
 Sample
 Generated
- Background MC: B^0/\overline{B}^0 generic, B^+/B^- generic, *uds*, $c\overline{c}$
- BABAR data: AllEventsSkim-Run[1-6]-OnPeak-R24c-v07 ($N_{RR} = 471 \times 10^6$) B^0/\overline{B}^0

Initial preselection in the reconstruction code:

- Proton List: 4 protons pCombinedVeryLoose *
- Successful kinematic fit to form a common vertex
- Large preliminary cuts on $m_{_{ES}}$, ΔE

Not whole statistics available used yet!

Signal

 B^+/B^-

uds

CC

Observed variable	Signal efficiency= #truth-matched / #generated
m _{es}	(38.50 ± 0.06) %

*particle list generated from a combination of PID selectors (likelihood, boosted decision tree based) of Very Loose tightness level.

events

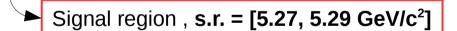
687k

92.2M

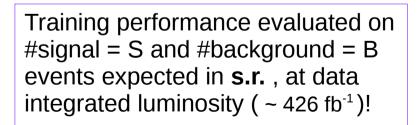
101.2M

101.7M

105M


Status of analysis: Selection

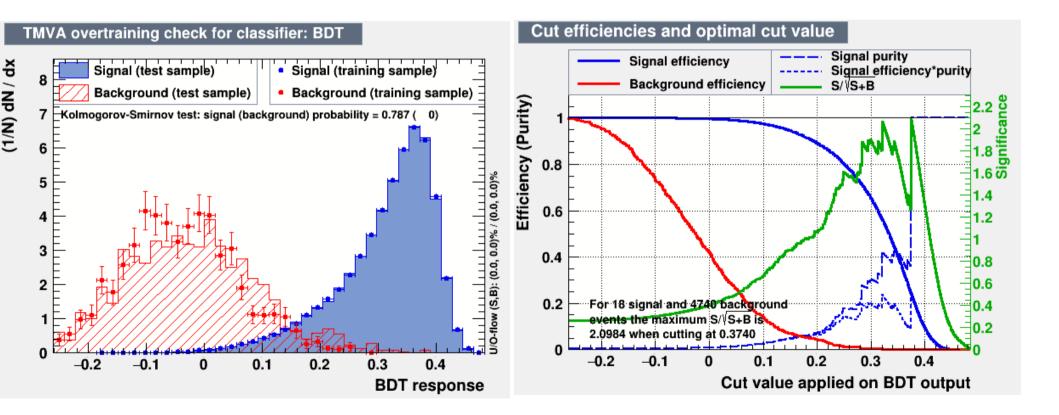
Previous results from cuts based selection:


- Varied variables: ΔE , B vertex probability, PID tightness
- Cuts motivated from Signal MC shaping
- Event shape variables cuts tested
- Best significance: 0.887422

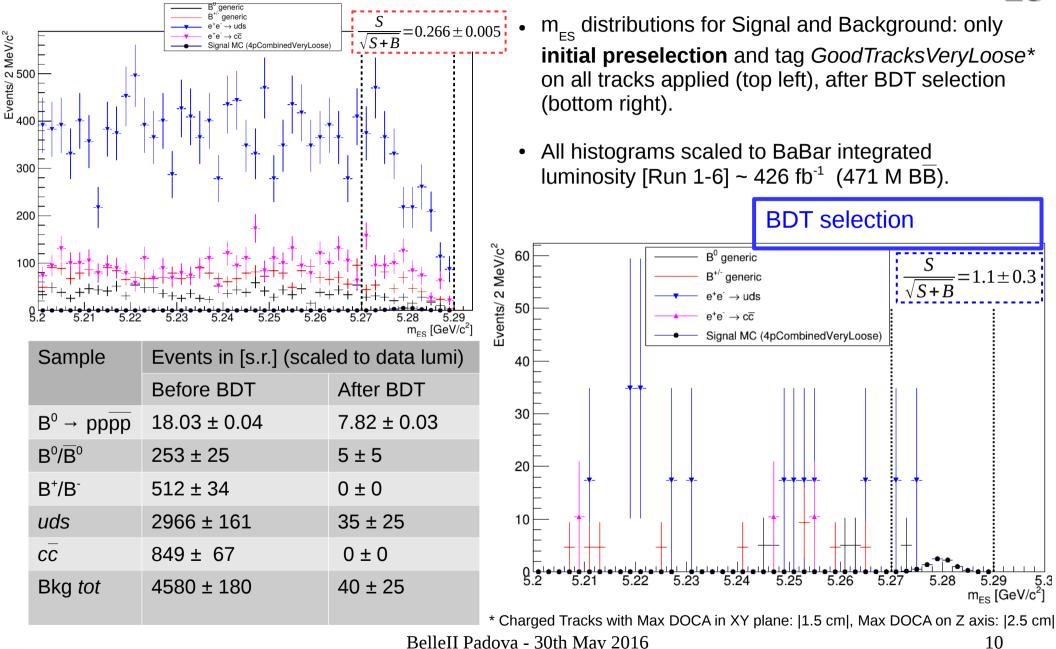
Selection Upgrade

- Different methods of Multivariate Analysis (MVA) tested, Boosted Decision Tree based method (**BDT**) is the best performing.
- BDT method trained on the reconstructed candidates in the *signal region* to optimize Background rejection.
- Input variables (\rightarrow distribution plots in the backup slides):
 - ΔΕ
 - B vertex probability
 - Vertex z coordinate
 - Vertex radius
 - $Cos\theta_{B}^{CM}$
 - Event shape variables (FoxWolfram, $|\cos\theta_{THRUST}|$)

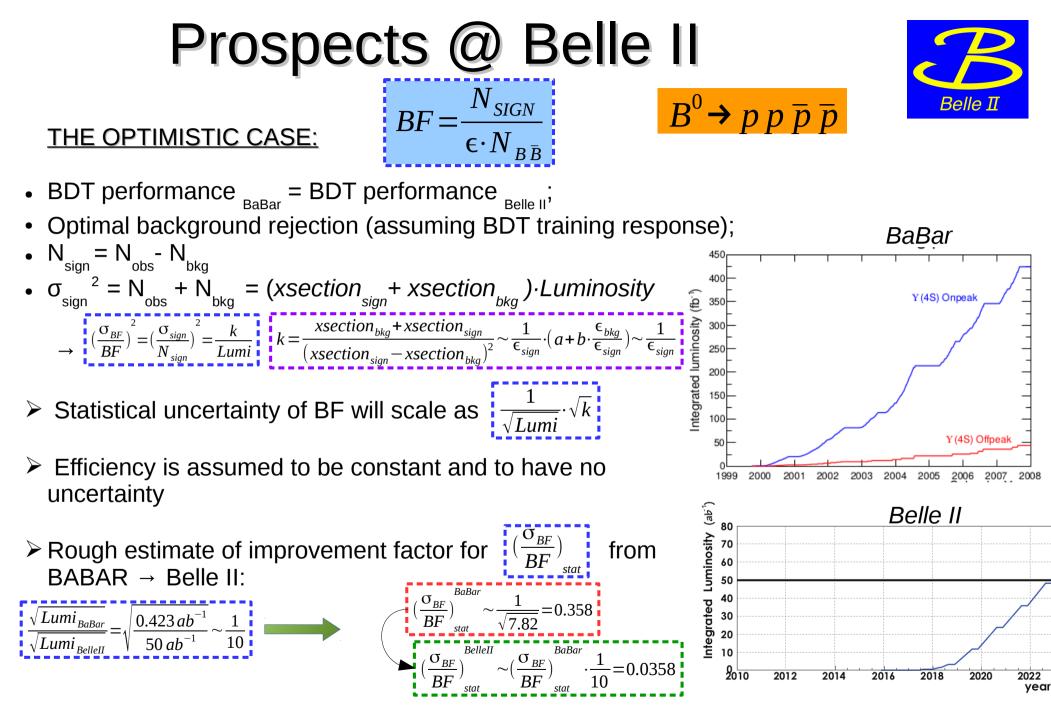
 $B^0 \rightarrow p p \overline{p} \overline{p}$


→ S = 18. B = 4580

Status of analysis: BDT training $B^0 \rightarrow p p \overline{p} \overline{p}$

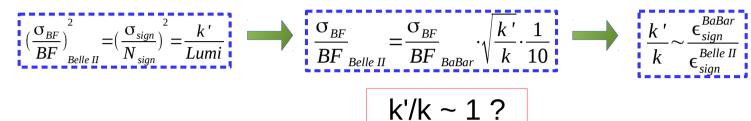

• BDT response from MVA Training for a number of signal and background events S = 18, B = 4580:

MVA Method	Optimal cut	$\frac{S}{\sqrt{S+B}}$	8 _{sign}	ε _{bkg}	N _{sign}	N _{bkg}
BDT	0.3740	2.09841	0.2446	0	4.403339	0



Status of analysis: Selection applied on m_{ES}

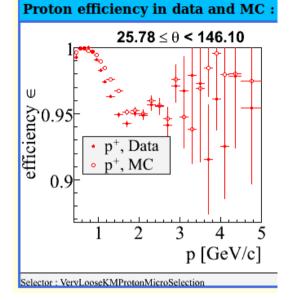
BelleII Padova - 30th May 2016



BelleII Padova - 30th May 2016

• BDT performance \neq BDT performance $_{BaBar} \neq$ BDT performance $_{Belle ||}$

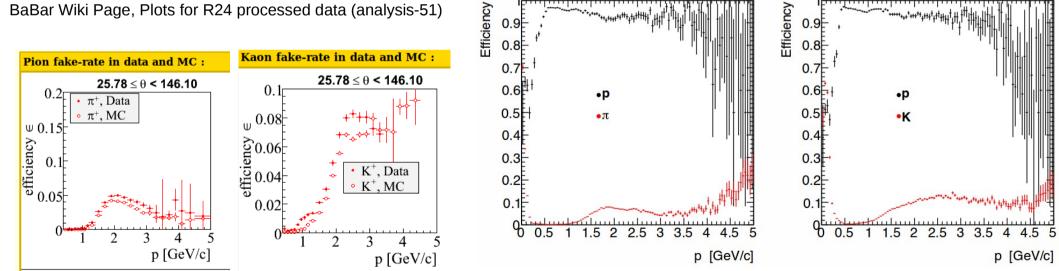
- Efficiency is not a constant:
 - Energy dependence (different boosts: shift in momentum distributions for B decays particles → not so relevant for p @ 1 GeV/c);
 - Detector acceptance (BaBar acceptance ~ conservative estimate!);
 - PID efficiency for protons @ ~ 1 GeV (→ momentum distributions in backup slides)
 BaBar:


BaBar	Provided Info	Belle II
SVT	dE/dx, p	Pixel + SVD
DCH	dE/dx	CDC
DIRC	cosθ _c	TOP + ARICH

- → best analysis sensitivity with *pKM* selector (BDT based algorithm)
- $\rightarrow \varepsilon_{p/p}$ (1 GeV/c) > 0.99
- → $misID_{p/\pi} < 0.001$, $misID_{p/K} < 0.005$
- Belle II (not final numbers!) :
 - → ϵ (1 GeV/c) p/ π ~ 0.96/0.02
 - → ε (1 GeV/c) p/K ~ 0.94/0.02

BelleII Padova - 30th May 2016

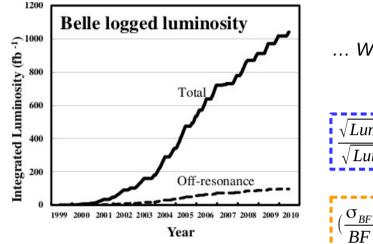
Prospects @ Belle II



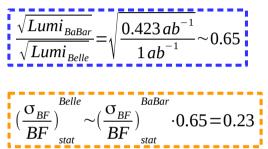
• BaBar efficiency and misID probability Vs momentum for *pKMVeryLoose* selector are shown in blue and yellow boxes on the left.

 $B^0 \rightarrow p p \overline{p} \overline{p}$

- Belle II PID combined efficiency Vs momentum, calculated for the nominal background regime (BGx1). (Left plot p/π and right plot p/K separation)
- Beams background impact on Belle II PID performance not yet clear from MC studies.

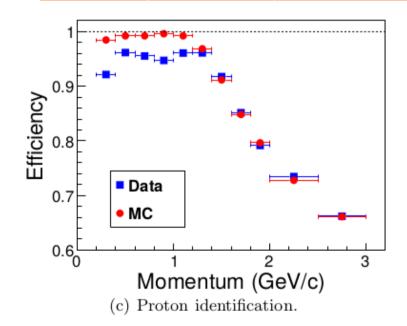


Plots shown in J.Bennet's "Combined Performance" talk, B2GM February 2016



Selector · VeryLooseKMProtonMicroSelectio

Analysis performance @ Belle


... What with Belle lumi (1 ab^{-1})?

BaBar	Provided Info	Belle
SVT	dE/dx, p	SVD
DCH	dE/dx	CDC
DIRC	Cosθ /	TOF, ACC
	#photons	

Belle II

 $B^0 \rightarrow p p \overline{p} \overline{p}$

• BaBar:

 \rightarrow best analysis sensitivity with *pKM* selector (BDT based algorithm)

• Belle:

→ PID based on likelihood ratios L(α : β) referred to combined info from CDC, TOF, ACC

 \rightarrow ε (1 GeV/c) > 0.98

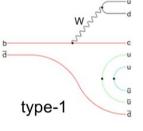
Summary & Outlook

AS concerns BaBar analysis:

- Selection almost finalized on BaBar analysis (to add whole statistics for sample MC);
- Further studies to validate MVA results on MC with results on data from side band region / offpeak (BaBar data sample);
- Analysis Strategy: one-dimensional unbinned likelihood fit to m_{ES} ;
- Study of Systematic Uncertainties.
- Further invastigation on prospects @ Belle II:
- Study of the original background composition (before PID) @ BaBar → estimate Belle II expected background using Belle II misID probabilities for protons (have to clarify numbers!);
- > B vertex probability \rightarrow improved SVD resolution impact?
- > Analysis performance @ Belle?

Thank you for your attention.

Backup Slides



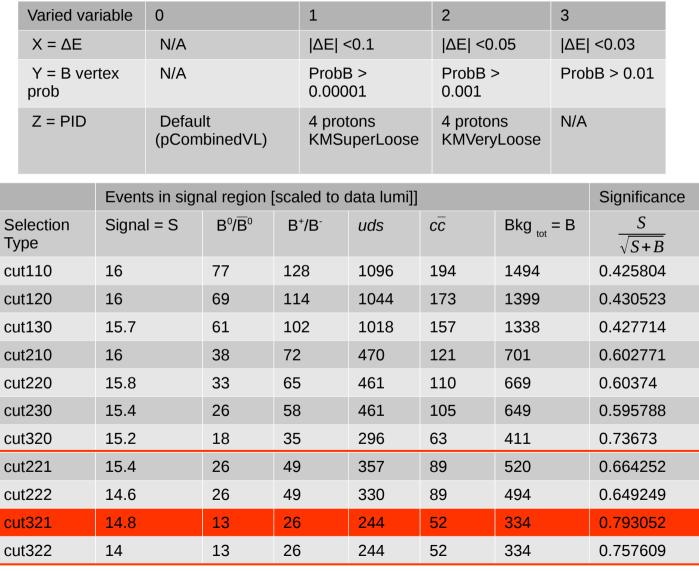
Theoretical Models

• Two-body baryon-antibaryon decay

Mechanism	Туре	Suppression
W- emission	Nonfactorizable, Internal	No Color suppressed (totally antisymmetric wave function)
W- penguin transition	$b \rightarrow s(d)$	Cabibbo
W- exchange	Neutral B mesons	Helicity suppressed
W- annhilation	Charged B	Helicity Suppressed

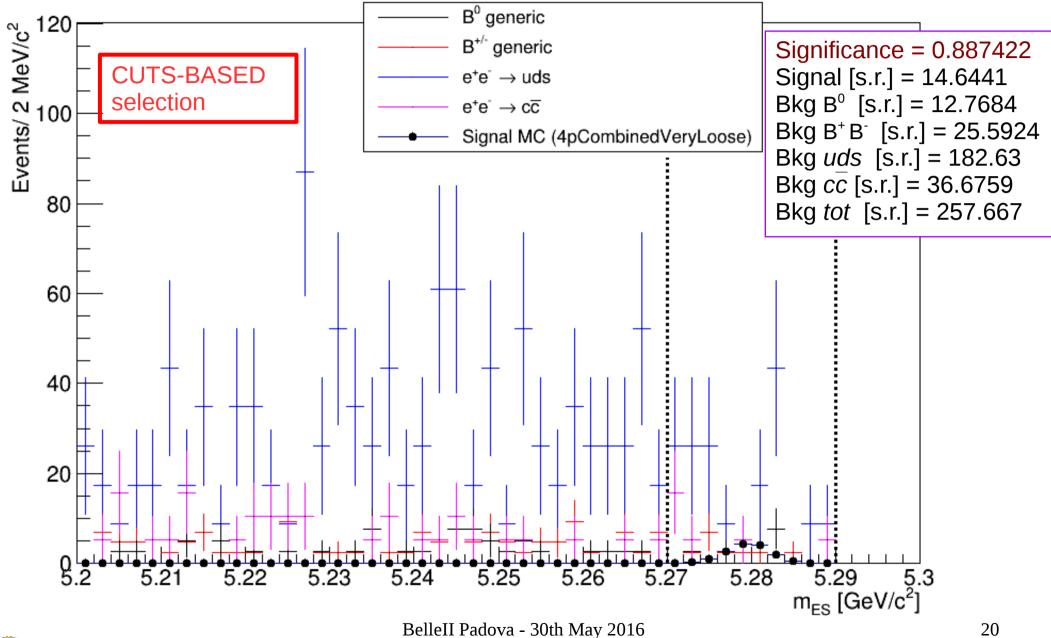
• Three-body decay (baryon-antibaryon+meson)

<u>Mechanism</u>	Туре	Suppression	example diagrams:	c
W- emission	1 , External (2 diagrams) 2 , Internal (8 diagrams)	Color suppression can occur		W W W
W- penguin transition	$b \rightarrow s(d)$	Cabibbo	type-2	type-2

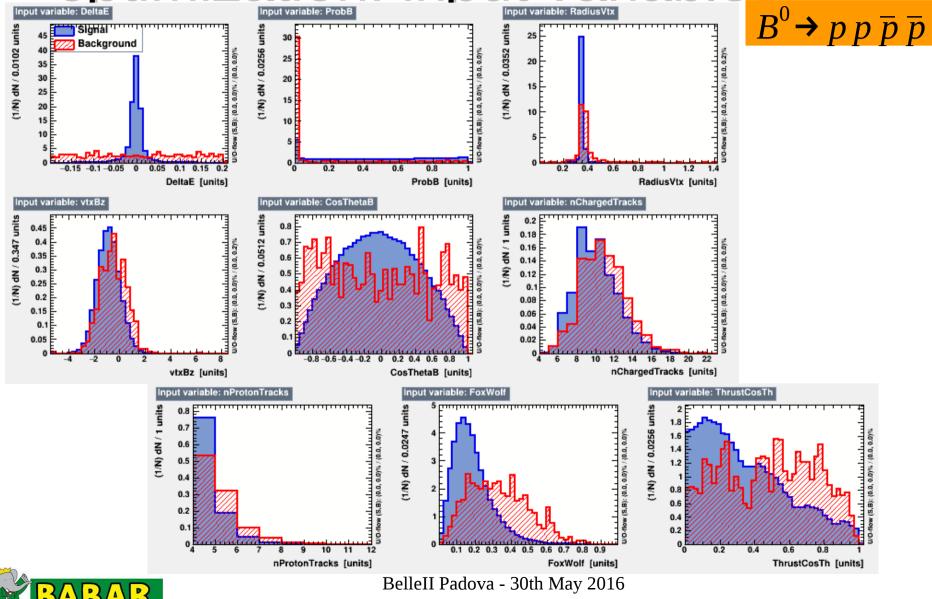

Status of analysis: Cuts-based Selection

 $B^0 \rightarrow p \, p \, \overline{p} \, \overline{p}$

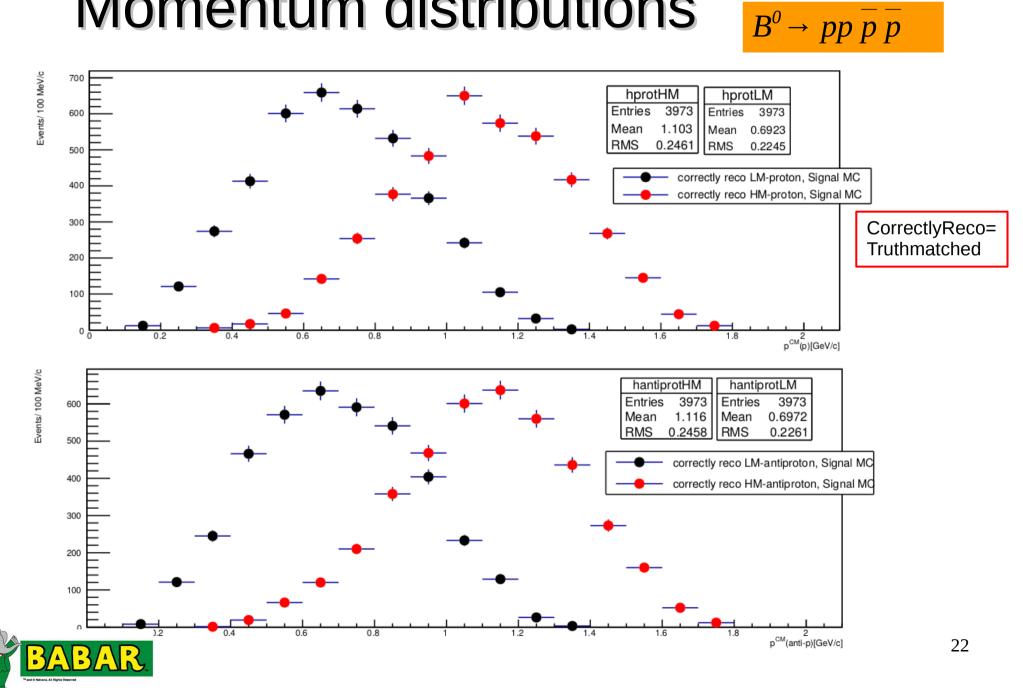
Selection type is defined by the type of cut applied \rightarrow "cutXYZ"

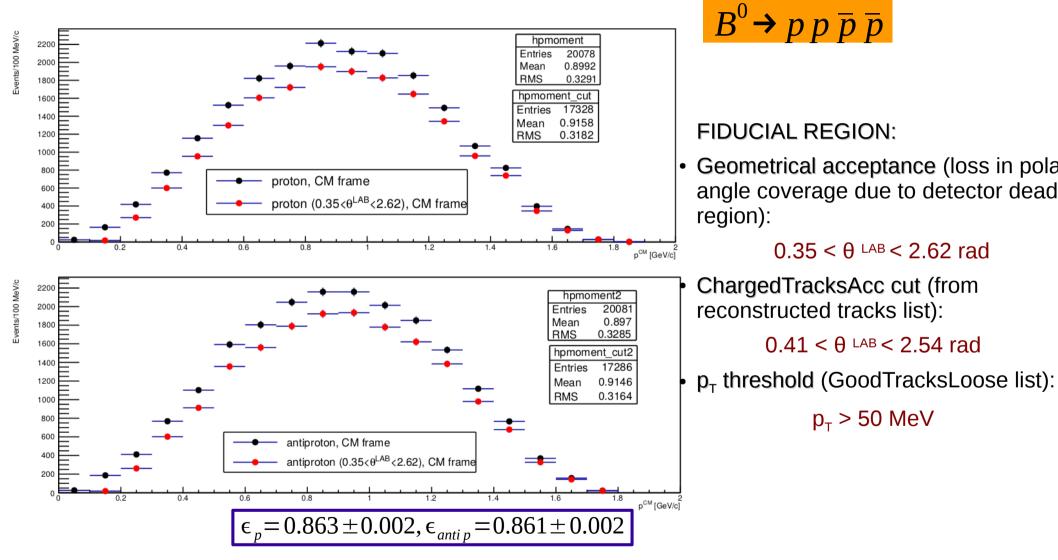

- X, Y, Z are integers representing the tightness of cut applied for each varied variable;
- Cuts on kinematic variables are motivated from Signal MC shaping;
- Significance increases with reduced ΔE window, but decreases with tighter cut on B vertex probability and PID
- Best selection (event shape discrimination added):

Cuts combination	Significance
Cut321	0.793052
Cut321 + FoxWolf < 0.5	0.887422



Status of analysis: Selections applied on m_ FS




MVA background rejection optimization: input variables

Momentum distributions

MC studies: Geometrical Acceptance

MC studies: Acceptance $B^{0} \rightarrow p p \overline{p} \overline{p}$

- Rough estimate of acceptance for 4 tracks:
- The calculated acceptance is the theoretical maximum of efficiency, only detector geometry constraints have been imposed;
- Investigate tracking contribution from Online Prompt Reconstruction lists:
 - *ChargedTracks* reconstruction efficiency+Acceptance:

 $\epsilon_p = 0.860 \pm 0.002, \epsilon_{antip} = 0.816 \pm 0.003$

$$\epsilon_{ChTrk} = \epsilon_p^2 \cdot \epsilon_{anti p}^2 = 0.493 \pm 0.003$$

 $Accept_{tot} = \epsilon_p^2 \cdot \epsilon_{anti p}^2 = 0.552 \pm 0.003$

- *pCombinedVL* reconstruction efficiency + Acceptance:

 $\epsilon_p = 0.841 \pm 0.003, \epsilon_{anti p} = 0.789 \pm 0.003$

$$\epsilon_{pVL} = \epsilon_p^2 \cdot \epsilon_{antip}^2 = 0.441 \pm 0.003$$

Additional channel

Maximum efficiency achievable (from MC acceptance studies) = 55%

→ RELAXING PID requirements is not such a big improvement BUT good to extend analysis target:

• $p\overline{p}$ from *pCombinedVeryLoose* list + 2 *ChargedTracks* with opposite charges and study both: $B^0 \rightarrow pp\overline{pp}$, $B^0 \rightarrow p\overline{p}\pi^+\pi^-$

Why $B^0 \rightarrow p \overline{p} \pi^+ \pi^-$?

- Only UL on PDG [CLEO, PhysRevLett.62.8, Issue 1, January 1989]: BF<10⁻⁴
- Why has it never been measured before by BaBar?
- Previosly @Babar: Hartmann et al.(2013), [BaBar-PUB-12/028, SLAC-PUB-1536 Study of the decay $\overline{B}^{0} \rightarrow \Lambda^{+}_{c} \overline{p}\pi^{+}\pi^{-}$ and its intermediate states]: measured BF ($\overline{B}^{0} \rightarrow \Lambda^{+}_{c} \overline{p}\pi^{+}\pi^{-}_{non-res}$) = (79 ± 4 ± 4 ± 20) x10⁻⁵

