Bottomonium Physics at Roberto Mussa INFN Torino

First question: where to run

Energy	Outcome	Lumi (fb ${ }^{-1}$)	Comments
$\Upsilon(1 S)$ On	N/A	60+	-No interest identified for Phase 2 -Low energy
$\mathrm{Y}(2 \mathrm{~S}) \mathrm{On}$	N/A	200	-No interest identified for Phase 2
r(1D) Scan	Particle discovery	10-20	-Accessible in B Factories?
$\Upsilon(3 S)$ On	Many topics	200+	-Known resonance -High luminositv requirement: Phase 3
$\Upsilon(3 S)$ Scan	Precision QED	~10	-Understanding of beam conditions needed
Y(2D) Scan	Particle discovery	10-20	-Unknown mass
$\Upsilon(4 S)+$ Scan	Particle discovery?	10+?	-Energy to be determined
$\mathrm{Y}(6 \mathrm{~S}) \mathrm{On}$	Particle discovery?	30+?	-Upper limit of machine energy
Single γ	New physics?	30+	-Special triggers required

Oggi parlero' di:

- grandezza e limiti della Y(6S) in phase II
- altre ragioni per fare $Y(3 S)$ in phase III

First question: where to run

Prospects of a pilot run at $Y(6 S)$ in phase II More physics with 1 Billion $\mathrm{Y}(35)$ in phase III

Boundary conditions

- Goals of Phase 2

■ Machine study for settings to reach high luminosity

- Understand beam background for safe VXD installation
- Establish conditions for stable machine operation
- Reach target luminosity of $\sim 1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Phase 2 Operating Conditions
$\square \quad 4-5 \mathrm{mos}$. of machine studies, $\sim 1-2 \mathrm{mos}$. physics
Energy spread assumed to be $\sim 5 \mathrm{MeV}$ (similar to Belle)
- Maximum possible energy 11.06-11.25 GeV
- Stable operation close to $\Upsilon(4 \mathrm{~S})$ strongly preferred
- Large uncertainty on Phase 2 luminosity ($20 \pm 20 \mathrm{fb}^{-1}$)
- Phase 3
\square Operate at nominal conditions ($1+x 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)
\square Some combination of $\Upsilon(4 \mathrm{~S})$ and other energies?

BELLE-I scans

- 61 points, $50 / \mathrm{pb}, 10.75-11.05 \mathrm{GeV}$
- 16 points, 1 / fb, $10.63-11.02 \mathrm{GeV}$

Not just Rb analysis: also $\mathrm{Y} \pi \pi$ Exclude Ali's peak at 10.91

5th Belle-II Italian Meeting
R.Mussa, Bottomonium Physics at Belle-II

We may think to take $10 \mathrm{fb}^{-1}$ at 10.75 (where Rb collapses and R_{Y} starts rising); not a scan, just stay there

We may think to take $10 \mathrm{fb}^{-1}$ at 10.75 (where Rb collapses and R_{Y} starts rising) ... and $10 \mathrm{fb}^{-1}$ at 10.65 (where Rb shows a dip, just above the $B^{*} B^{*}$ threshold)

Study these channels: $\mathrm{BB}, \mathrm{B}^{*} \mathrm{~B}, \mathrm{~B}^{*} \mathrm{~B}^{*}, Y \pi \pi, Y \eta$ at $10.65,10.75$

$Y(6 S)$ results in Belle-I

- Preliminary evidence for $\Upsilon(6 S) \rightarrow \pi \pi h_{b}(n P)$, via $\pi Z_{b}{ }^{ \pm}(106 X X)$ decay

- Resonance structure of $\Upsilon(6 S) \rightarrow \pi \pi \Upsilon(p S)$ decays not fully studied

Significance figures include syst errors

Voloshin has explored consequences of the molecular model to the spectrum of the Zb states: neutral partners (Wb) with $J=0,1,2$ are expected on the same energy range, and should be reachable from $Y(5 S)$ via radiative transitions.

- Important to find/exclude W_{b} states! $\quad I^{G}\left(J^{P}\right): \quad 1^{+}\left(1^{+}\right) \quad 1^{-}\left(0^{+}\right) \quad 1^{-}\left(1^{+}\right) \quad 1^{1^{-}\left(2^{+}\right)}$
- Intriguing possibility: search for strange bottomonium molecules, $B_{s}^{(*)} \bar{B}^{(*)}$ with mass $10.700 \div 10.750 \mathrm{GeV}$ in $e^{+} e^{-} \rightarrow Z_{b s} K$ around $10.4 \div 10.5 \mathrm{GeV}$.
?? probably meant 11.4-11.5

searches in Belle-II

Threshold for $\mathrm{Z}_{\mathrm{bs}}+\mathrm{K}$

- With current (limited) statistics at $\Upsilon(6 S)(\sim 11.00 \mathrm{GeV})$:

$$
\left.\left.\frac{\Upsilon(n S) \pi \pi}{h_{b}(k P) \pi \pi}\right|_{\Upsilon(6 S)} \approx \frac{\left.\Upsilon(n S) \pi \pi\right|_{\text {through } Z_{b}}}{h_{b}(k P) \pi \pi}\right|_{\Upsilon(5 S)}
$$

l.e. at $\Upsilon(6 S)$ essentially no non-resonant background not associated with $Z_{b}^{\left({ }^{\prime}\right)}$, unlike at $\Upsilon(5 S)$. (The HQSS 'forbidden' channels $h_{b}(k P) \pi \pi$ go exclusively through the $Z_{b}^{\left({ }^{\prime}\right)}$ within either peak.)

- 11006 MeV is the threshold for $B_{1}(5721) \bar{B}$. If the pair is produced near threshold, then a 'threshold triangle singularity' is possible with

$Z_{b}(10610)$ [not the $\left.Z_{b}(10650)\right]$.

Y(6S) prospects in Belle-II phase II

If this is the mechanism, then

- The production of final states with bottomonium at $\Upsilon(6 S)$ proceed through the $Z_{b}(10610)$ resonance with no non-resonant background.
- Only the $Z_{b}(10610)$ is present in the production channels, but not the Z_{b} (10650).
- There should be a detectable production of $B_{1}(5721) \bar{B}+$ c.c. heavy meson pairs in the threshold region. In particular, this should contribute to the yield of the final channel ($B^{*} \bar{B}+c . c$.) π, but not $B^{*} \bar{B}^{*} \pi$.
- The sub dominant decay of the B_{1} meson, $B_{1} \rightarrow B \pi \pi$, may provide, through a similar mechanism, a gateway to the expected at the $B \bar{B}$ threshold resonance $W_{b 0}$ with $I^{G}\left(J^{P}\right)=1^{-}\left(0^{+}\right)$.
- Additionally, there may be another similar bump at the c.m. energy around 11.06 GeV , near the threshold of $B_{1} \bar{B}^{*}$ and possibly $B_{2} \bar{B}^{*}$, where the production of channels with bottomonium may proceed through a mixture of the $Z_{b}(10610)$ and $Z_{b}(10650)$ resonances. (At present there is no appropriate data at $e^{+} e^{-}$energies above 11.02 GeV .)

Y(6S) prospects in Belle-II phase II

- Exotics at heavy thresholds - new nuclear physics
- Dominant correlations: molecular, hadro-quarkonium, di-diquark, mess?
- Forces in molecules. Guidance from spin. (HQSS OK in Z_{b}.)
- Unexpected LQSS?
- Expected new states ($W_{b J}$, strange hidden-bottomonium). Requires venturing into higher energies, 11.5 GeV and above.
- $Z_{b}(10610)$ and $Z_{b}(10650)$ at $\Upsilon(6 S)$ and beyond - can have interesting features.
- Hadro-bottomonium? Requires searching beyond 11 GeV .

$Y(5,6 S)$ eta meson transitions

Assuming $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(5 \mathrm{~S})\right)=(0.340 \pm 0.016) \mathrm{nb}$

$\mathrm{BF}[\mathrm{Y}(5 \mathrm{~S}) \rightarrow \eta \mathrm{Y}(2 \mathrm{~S})]=(2.1 \pm 0.7 \pm 0.3) \times 10-3$		
BF[Y(5S) $\rightarrow \eta$	$\mathrm{Y}(1 \mathrm{D}) \mathrm{=}=(2.8 \pm 0.7$	0.4) $\times 10-3$
$\mathrm{BF}[\mathrm{Y}(5 \mathrm{~S}) \rightarrow$	$\mathrm{h}_{\mathrm{b}}(1 \mathrm{P})$] < 3.3×10^{-3}	(90\% CL)
BF[Y(5S) $\rightarrow \eta$	$\mathrm{hb}_{\mathrm{b}}(2 \mathrm{P})$] < 3.7×10^{-3}	(90\% CL)

Questions: large eta transitions also from $Y(6 S)$? Is hb(3P) reachable with eta transitions?

Y(6S) eta meson transitions

\rightleftarrows
Phase space at $\Upsilon(6 \mathrm{~S})$ is sufficient for $W_{b 0} \rho$?

BESIII observed $Y(4260) \rightarrow X(3872) \gamma$
Belle did not find $\Upsilon(5 S) \rightarrow X_{b} \gamma$.

SuperKEK Limits

LER Beam Energy (GeV)

$\chi_{b 0} \rightarrow \tau \tau: s$-channel H_{125} and $H_{\text {new }}$
Godfrey-Logan @ B2TIP-2016

Matrix element (alignment limit for H_{125}):

$$
\begin{aligned}
\mathcal{M}^{H}= & \left\langle\ell^{+} \ell^{-}\right| \frac{i m_{\ell}}{v} \bar{\ell} \ell|\mathrm{O}\rangle \frac{i}{M_{\chi_{b 0}}^{2}-M_{H_{125}}^{2}}\langle\mathrm{O}| \frac{i m_{b}}{v} \bar{b} b\left|\chi_{b 0}\right\rangle \\
& +\left\langle\ell^{+} \ell^{-}\right| \frac{i m_{\ell} \tan \beta}{v} \bar{\ell} \ell|\mathrm{O}\rangle \frac{i}{M_{\chi b \mathrm{O}}^{2}-M_{H_{\mathrm{new}}}^{2}}\langle\mathrm{O}| \frac{i m_{b} \tan \beta}{v} \bar{b} b\left|\chi_{b 0}\right\rangle
\end{aligned}
$$

Including $H_{\text {new }}$ exchange the partial width becomes:

$$
\begin{aligned}
\Gamma^{H}\left(\chi_{b 0} \rightarrow \tau \tau\right)= & \frac{M_{\chi_{b 0}}}{8 \pi}\left[1-\frac{4 m_{\tau}^{2}}{M_{\chi_{b 0}}^{2}}\right]^{3 / 2}\left(\frac{m_{b} m_{\tau}}{v^{2} M_{H_{125}}^{2}}\right)^{2} f_{\chi_{b 0}}^{2} \\
& \times\left[1+\frac{M_{H_{125}}^{2} \tan ^{2} \beta}{M_{\text {new }}^{2}-M_{\chi b 0}^{2}}\right]^{2}
\end{aligned}
$$

The Higgs-mediated BRs are also multiplied by this factor:

$$
\left.\begin{array}{l}
\mathrm{BR}^{H}\left(\chi_{b \mathrm{O}}(1 P) \rightarrow \tau \tau\right)=3.1 \times 10^{-13} \\
\mathrm{BR}^{H}\left(\chi_{b \mathrm{O}}(2 P) \rightarrow \tau \tau\right)=(1.9 \pm 0.5) \times 10^{-12}
\end{array}\right\} \times\left[1+\frac{M_{H_{125}}^{2} \tan ^{2} \beta}{M_{\mathrm{new}}^{2}-M_{\chi_{b 0}}^{2}}\right]^{2}
$$

Will only need $\left(M_{H_{125}} / M_{H_{\text {new }}}\right) \tan \beta \sim 30$ for $\mathcal{O}(100)$ signal events in $\gamma(3 S) \rightarrow \gamma \chi_{b 0}(2 P) \rightarrow \gamma \tau \tau$

BSM at $Y(3 S): \chi_{b 0}(1,2 \mathrm{P})$ coupling to Light Higgs

SuperKEKB/Belle-II offers a new era in high-statistics studies of scalar bottomonium via radiative γ decays $\gamma \rightarrow \gamma \chi_{b 0}$:
$-250 \mathrm{fb}^{-1}$ on $\Upsilon(3 S) \rightarrow 5.9 \times 10^{7} \chi_{b 0}(2 P)+2.7 \times 10^{6} \chi_{b 0}(1 P)$

- $250 \mathrm{fb}^{-1}$ on $\Upsilon(2 S) \rightarrow 6.2 \times 10^{7} \chi_{b 0}(1 P)$
$\chi_{b 0}$ has the same spin and CP quantum numbers as the Higgs.
Can its decays be used to probe (BSM) Higgs physics?

Precedents:

- $B^{+} \rightarrow \tau^{+} \nu$ sensitive to s-channel charged Higgs Hou 1993
- $\eta_{b} \rightarrow \tau \tau$ sensitive to s-channel CP-odd Higgs Rashed et al 2010
$\rightarrow \chi_{b 0} \rightarrow \tau \tau$ should be sensitive to s-channel CP-even Higgs
Haber, Kane \& Sterling, NPB 1979

Results: $\Upsilon(3 S)$

Phase II Tracking

- $\Upsilon(3 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(1 S / 2 S) \rightarrow \mu^{+} \mu^{-}$MC (50/50 split)
- Impact of lack of VXD: $\Upsilon(3 S) \rightarrow \pi^{+} \pi^{-} \Upsilon(2 S)$ not feasible
- $\Upsilon(\mathrm{nS}) \rightarrow \mu \mu$ mass resolution affected as well

Upsilon3S_Mrecoil

$\mathrm{m}(\Upsilon(1 \mathrm{~S}, 2 \mathrm{~S}) \rightarrow \mu \mu)$

Minimum pion momentum

Dipion transitions: BELLE-II vs Babar

Tamponi @ B2TIP2016

Babar: two analyses:

- Aubert et al., PRD78, 112002 (2008)

Using data from $\mathrm{Y}(4 \mathrm{~S})$: ISR exclusive decays

- Lees et al, PRD84, 011104 (2011)

Inclusive dipion transitions from 108 M Y(3S)

$$
Y(3 S) \rightarrow Y(2 S) M C
$$

Better resolution and better efficiency

	BaBar	BaBar ε	Bellell σ	Bellell ε
$\mathrm{Y}(3 \mathrm{~S}) \rightarrow \mathrm{Y}(2 \mathrm{~S})$	$\sim 4 \mathrm{MeV}$	16.7%	2.5 MeV	45%
$\mathrm{Y}(3 \mathrm{~S}) \rightarrow \mathrm{Y}(1 \mathrm{~S})$	$<4 \mathrm{MeV}$	41.8%	1.8 MeV	63%

$Y(3 S)^{\wedge} \pi \pi h_{b}(1 P)$

Great improvement thanks to better resolution
ics at Belle-II

Y(3S) single meson transitions

Y(3S) single meson transitions

Testing QCD multipole expansion
Three transitions should be visible from $Y(3 S)$ but experimental limits, where available, are below theory expectations:

$$
\begin{array}{ll}
-\mathbf{B}(\mathbf{Y}(\mathbf{3 S}) \rightarrow \boldsymbol{\eta} \mathbf{Y}(\mathbf{1 S})) \quad \begin{array}{l}
\text { theory: } 5-10 \times 10^{-4} \\
\\
\text { BaBar: }<1 \times 10^{-4}
\end{array}
\end{array}
$$

Y(3S) single meson transitions

Testing QCD multipole expansion
Three transitions should be visible from $Y(3 S)$ but experimental limits, where available, are below theory expectations:

$$
\begin{array}{ll}
-\mathbf{B}(\mathbf{Y}(\mathbf{3 S}) \rightarrow \boldsymbol{\eta} \mathbf{Y}(\mathbf{1 S})) \quad \begin{array}{l}
\text { theory: } 5-10 \times 10^{-4} \\
\\
\text { BaBar: }<1 \times 10^{-4}
\end{array}
\end{array}
$$

η transitions from $Y(3 S)$

Testing QCD multipole expansion
Three transitions should be visible from $\mathrm{Y}(3 \mathrm{~S})$ but experimental limits, where available, are below theory expectations:

$$
\begin{array}{ll}
-\mathrm{Y}(\mathbf{3 S}) \rightarrow \eta \mathrm{Y}(\mathbf{1 S}) \quad \begin{array}{l}
\text { theory: } 5-10 \times 10^{-4} \\
\\
\text { BaBar: }<1 \times 10^{-4}
\end{array}
\end{array}
$$

$-\mathrm{Y}(1 \mathrm{D}) \rightarrow \boldsymbol{\eta} \mathbf{Y}(\mathbf{1 S}) \quad$ Voloshin: PLB 562, 68(2003) QCD Axial Anomaly should enhance $\mathrm{Y}(1 \mathrm{D}) \rightarrow \eta \mathrm{Y}(1 \mathrm{~S})$ with respect to $\mathrm{Y}(1 \mathrm{D}) \rightarrow \pi \pi \mathrm{Y}(1 \mathrm{~S})$
\rightarrow no quantitative analysis
$\rightarrow \mathrm{Y}(1 \mathrm{D})$ reconstruction through radiative cascade:
High sensitivity to low energy backgrounds

5th Belle-II Italian Meeting

η transitions from $Y(3 S)$

Testing QCD multipole expansion
Three transitions should be visible from $\mathrm{Y}(3 \mathrm{~S})$ but experimental limits, where available, are below theory expectations:

```
\(-\mathrm{Y}(\mathbf{3 S}) \rightarrow \eta \mathrm{Y}(\mathbf{1 S}) \quad\) theory: \(5-10 \times 10^{-4}\)
    BaBar: \(<1 \times 10^{-4}\)
```

$-\mathrm{Y}(1 \mathrm{D}) \rightarrow \boldsymbol{\eta} \mathbf{Y}(\mathbf{1 S}) \quad$ Voloshin: PLB 562, 68(2003)
QCD Axial Anomaly should enhance $\mathrm{Y}(1 \mathrm{D}) \rightarrow \eta \mathrm{Y}(1 \mathrm{~S})$ with respect to $\mathrm{Y}(1 \mathrm{D}) \rightarrow \pi \pi \mathrm{Y}(1 \mathrm{~S})$
\rightarrow no quantitative analysis

$\rightarrow Y(1 D)$ reconstruction through radiative cascade:
High sensitivity to low energy backgrounds

Voloshin: Mod.Phys.Lett. A19,

$-\chi_{b 0}(2 P) \rightarrow \eta \eta_{b}$ 2895(2004)
$\rightarrow \mathrm{BF}$ of the order of few 10^{-3} (S-wave)
\rightarrow Bellell estimate $\sim 40 \mathrm{M} \chi_{b 0}(2 \mathrm{P}) \rightarrow \sim 10000$ reconstructed events
\rightarrow full inclusive analysis, low energy photons: hard to estimate the backgrounds now...

$\mathrm{Y}(3 \mathrm{~S})$ to $\mathrm{Y}\left(1^{3} \mathrm{D}\right.$ $1,2,3$

- Obtain event numbers by using Belle-BaBar cross section averages For $\Upsilon(3 S) 250 \mathrm{fb}^{-1}$ yields $10^{9} \Upsilon(3 S)$ (about 7 times Belle-Babar)

Parent	Decay chain	Combined	Events	
		BR	$p p$	$e^{+} e^{-}$
$3^{3} S_{1}$	$\xrightarrow{13.1 \%} 2^{3} P_{2} \gamma(86.2) \xrightarrow{1.2 \%} 1^{3} D_{3} \gamma(96.5) \xrightarrow{91.0 \%} 1^{3} P_{2} \gamma(256.0) \xrightarrow{19.1 \%} 1^{3} S_{1} \gamma(441.6) \xrightarrow{2.48 \%} \mu^{+} \mu^{-}$	6.8×10^{-6}	2100	6800
	$\xrightarrow{13.1 \%} 2^{3} P_{2} \gamma(86.2) \xrightarrow{0.2 \%} 1^{3} D_{2} \gamma(104.4) \xrightarrow{22 \%} 1^{3} P_{2} \gamma(248.4) \xrightarrow{19.1 \%} 1^{3} S_{1} \gamma(441.6) \xrightarrow{2.48 \%} \mu^{+} \mu^{-}$	2.7×10^{-1}	84	270
	$\xrightarrow{13.1 \%} 2^{3} P_{2} \gamma(86.2) \xrightarrow{0.2 \%} 1^{3} D_{2} \gamma(104.4) \xrightarrow{74.7 \%} 1^{3} P_{1} \gamma(267.3) \xrightarrow{33.9 \%} 1^{3} S_{1} \gamma(423.0)^{2.48 \%} \mu^{+} \mu^{-}$	1.6×10^{-6}	500	1600
Interested ir	$\xrightarrow{13.1 \%} 2^{3} P_{2} \gamma(86.2) \xrightarrow{0.02 \%} 1^{3} D_{1} \gamma(78.0) \xrightarrow{1.6 \%} 1^{3} P_{2} \gamma(239.1) \xrightarrow{19.1 \%} 1^{3} S_{1} \gamma(441.6) \xrightarrow{2.48 \%} \mu^{+} \mu^{-}$	2.0×10^{-9}	0.6	2
	$\xrightarrow{13.1 \%} 2^{3} P_{2} \gamma(86.2) \xrightarrow{0.02 \%} 1^{3} D_{1} \gamma(78.0) \xrightarrow{28 \%} 1^{3} P_{1} \gamma(258.0) \xrightarrow{33.9 \%} 1^{3} S_{1} \gamma(423.0)^{2.48 \%} \mu^{+} \mu^{-}$	6.2×10^{-8}	19	62
	$\xrightarrow{13.1 \%} 2^{3} P_{2} \gamma(86.2) \xrightarrow{0.02 \%} 1^{3} D_{1} \gamma(78.0) \xrightarrow{47.1 \%} 1^{3} P_{0} \gamma(290.5) \xrightarrow{1.76 \%} 1^{3} S_{1} \gamma(391.1) \xrightarrow{2.48 \%} \mu^{+} \mu^{-}$	5.4×10^{-9}	2	5
decay	$\xrightarrow{13.1 \%} 2^{3} P_{2} \gamma(86.2) \xrightarrow{0.02 \%} 1^{3} D_{1} \gamma(78.0) \xrightarrow{0.00393 \%} \mu^{+} \mu^{-}$	1.0×10^{-9}	0.3	1
chains via	$\xrightarrow{12.6 \%} 2^{3} P_{1} \gamma(99.3) \xrightarrow{1.9 \%} 1^{3} D_{2} \gamma(91.3) \xrightarrow{22 \%} 1^{3} P_{2} \gamma(248.4) \xrightarrow{19.1 \%} 1^{3} S_{1} \gamma(441.6) \xrightarrow{2.48 \%} \mu^{+} \mu^{-}$	2.5×10^{-6}	780	2500
unobserved	$\xrightarrow{12.6 \%} 2^{3} P_{1} \gamma(99.3) \xrightarrow{1.9 \%} 1^{3} D_{2} \gamma(91.3) \xrightarrow{74.7 \%} 1^{3} P_{1} \gamma(267.3) \xrightarrow{33.9 \%} 1^{3} S_{1} \gamma(423.0) \xrightarrow{2.48 \%} \mu^{+} \mu^{-}$	1.5×10^{-5}	4650	15,000
1 states	$\xrightarrow[\rightarrow]{12.6 \%} 2^{3} P_{1} \gamma(99.3) \xrightarrow{0.80 \%} 1^{3} D_{1} \gamma(100.8) \xrightarrow{1.6 \%} 1^{3} P_{2} \gamma(239.1) \xrightarrow{19.1 \%} 1^{3} S_{1} \gamma(441.6) \xrightarrow{2.48 \%} \mu^{+} \mu^{-}$	7.6×10^{-8}	24	76
	$\xrightarrow{12.6 \%} 2^{3} P_{1} \gamma(99.3) \xrightarrow{0.80 \%} 1^{3} D_{1} \gamma(100.8) \xrightarrow{28 \%} 1^{3} P_{1} \gamma(258.0) \xrightarrow{33.9 \%} 1^{3} S_{1} \gamma(423.0)^{2.48 \%} \mu^{+} \mu^{-}$	2.4×10^{-6}	740	2400
	$\xrightarrow{12.6 \%} 2^{3} P_{1} \gamma(99.3) \xrightarrow{0.80 \%} 1^{3} D_{1} \gamma(100.8) \xrightarrow{47.1 \%} 1^{3} P_{0} \gamma(290.5) \xrightarrow{1.76 \%} 1^{3} S_{1} \gamma(391.1) \xrightarrow{2.48 \%} \mu^{+} \mu^{-}$	2.1×10^{-7}	65	210
	$\xrightarrow{5.9 \%} 2^{3} P_{0} \gamma(122.0) \xrightarrow{0.4 \%} 1^{3} D_{1} \gamma(78.0) \xrightarrow{1.6 \%} 1^{3} P_{2} \gamma(239.1) \xrightarrow{19.1 \%} 1^{3} S_{1} \gamma(441.6) \xrightarrow{2.48 \%} \mu^{+} \mu^{-}$	1.8×10^{-8}	6	18
	$\xrightarrow{5.9 \%} 2^{3} P_{0} \gamma(122.0) \xrightarrow{0.4 \%} 1^{3} D_{1} \gamma(78.0) \xrightarrow{28 \%} 1^{3} P_{1} \gamma(258.0) \xrightarrow{33.9 \%} 1^{3} S_{1} \gamma(423.0) \xrightarrow{2.48 \%} \mu^{+} \mu^{-}$	5.6×10^{-7}	170	560
	$\xrightarrow{5.9 \%} 2^{3} P_{0} \gamma(122.0) \xrightarrow{0.4 \%} 1^{3} D_{1} \gamma(78.0) \xrightarrow{47.1 \%} 1^{3} P_{0} \gamma(290.5) \xrightarrow{1.76 \%} 1^{3} S_{1} \gamma(391.1) \xrightarrow{2.48 \%} \mu^{+} \mu^{-}$	4.8×10^{-8}	15	48
$3^{1} S_{0}$	$\xrightarrow{1.8 \times 10^{-6}} 2^{3} S_{1} \gamma(309.2) \xrightarrow{1.93 \%} \mu^{+} \mu^{-}$	3.4×10^{-8}	5	NA
	$\xrightarrow{1.5 \times 10^{-5}} 1^{3} S_{1} \gamma(840.0) \xrightarrow{2.48 \%} \mu^{+} \mu^{-}$	3.7×10^{-7}	52	NA

Problem : QED+beam backgrounds, to be estimated
5th Belle-II Italian Meeting
R.Mussa, Bottomonium Physics at Belle-II

Hindered M1 transitions from $\mathrm{Y}(3 S)$

Components of the loop for different transitions
5th Belle-II Italian Meeting

Spin triplet - spin singlet transitions sensitive to heavy quark spin symmetry breaking

Very recent paper: arXiv:1604.00770

bottomon	
$\begin{aligned} \chi_{b 0} & \rightarrow h_{b} \gamma \\ \chi_{b 1} & \rightarrow h_{b} \gamma \\ \chi_{b 2} & \rightarrow h_{b} \gamma \\ h_{b} & \rightarrow \chi_{b 0} \gamma \\ h_{b} & \rightarrow \chi_{b 1} \gamma \\ h_{b} & \rightarrow \chi_{b 2} \gamma \end{aligned}$	$\begin{aligned} & {\left[B^{*}, \bar{B}^{*}, B\right],\left[B^{*}, \bar{B}^{*}, B^{*}\right],\left[B, \bar{B}, B^{*}\right]} \\ & {\left[B^{*}, \bar{B}, B^{*}\right],\left[B, \bar{B}^{*}, B^{*}\right]} \\ & {\left[B^{*}, \bar{B}^{*}, B\right],\left[B^{*}, \bar{B}^{*}, B^{*}\right]} \\ & {\left[B^{*}, \bar{B}, B\right],\left[B, \bar{B}^{*}, B^{*}\right],\left[B^{*}, \bar{B}^{*}, B^{*}\right]} \\ & {\left[B^{*}, \bar{B}, B^{*}\right],\left[B^{*}, \bar{B}^{*}, B\right]} \\ & {\left[B, \bar{B}^{*}, B^{*}\right],\left[B^{*}, \bar{B}^{*}, B^{*}\right]} \end{aligned}$

Hindered M1 transitions between P waves

$$
\chi_{b J}(2 \mathrm{P}) \rightarrow \gamma \mathrm{h}_{\mathrm{b}}(2 \mathrm{P})
$$

\rightarrow requires $\mathrm{Y}(3 \mathrm{~S})$ data

Experimentally unexplored territory
$h_{b}(2 P) \rightarrow \gamma \chi_{b J}$ (1P)
\rightarrow requires $\mathrm{Y}(5,6 \mathrm{~S})$ data

Antinuclei in $\mathrm{Y}(3 S)$ decays

CLEO results :

$$
\begin{gathered}
\mathcal{B}^{\operatorname{dir}}(\mathrm{Y}(1 S) \rightarrow \bar{d} X)=(3.36 \pm 0.23 \pm 0.25) \times 10^{-5} \\
\mathcal{B}(\mathrm{Y}(2 S) \rightarrow \bar{d}+X)=(3.37 \pm 0.50 \pm 0.25) \times 10^{-5}
\end{gathered}
$$

BABAR results:

Resonance	Onpeak	\# of Υ Decays	Offpeak
$\Upsilon(4 S)$	$429 \mathrm{fb}^{-1}$	463×10^{6}	$44.8 \mathrm{fb}^{-1}$
$\Upsilon(3 S)$	$28.5 \mathrm{fb}^{-1}$	116×10^{6}	$2.63 \mathrm{fb}^{-1}$
$\Upsilon(2 S)$	$14.4 \mathrm{fb}^{-1}$	98.3×10^{6}	$1.50 \mathrm{fb}^{-1}$
Process	Rate		
$\mathcal{B}(\Upsilon(3 S) \rightarrow \bar{d} X)$	$\left(2.33 \pm 0.15_{-0.28}^{+0.31}\right) \times 10^{-5}$		
$\mathcal{B}(\Upsilon(2 S) \rightarrow \bar{d} X)$	$\left(2.64 \pm 0.11_{-0.21}^{+0.26}\right) \times 10^{-5}$		
$\mathcal{B}(\Upsilon(1 S) \rightarrow \bar{d} X)$	$\left(2.81 \pm 0.49_{-0.24}^{+0.20}\right) \times 10^{-5}$		
$\sigma\left(e^{+} e^{-} \rightarrow \bar{d} X\right)[\sqrt{s} \approx 10.58 \mathrm{GeV}]$	$\left(9.63 \pm 0.41_{-1.01}^{+1.17}\right) \mathrm{fb}$		
$\frac{\sigma\left(e^{+} e^{-} \rightarrow \bar{d} X\right)}{\sigma\left(e^{+} e^{-} \rightarrow \text { Hadrons }\right)}$	$\left(3.01 \pm 0.13_{-0.31}^{+0.37}\right) \times 10^{-6}$		

With 0.8-1 Billion $\mathrm{Y}(3 \mathrm{~S})$ decays, we can search for anti-tritium and $\mathrm{He}-3$ production in boftberselfillifflian Meeting
R.Mussa, Bottomonium I

Conclusions

We may be able to do some valuable physics during phase-II run , without low momentum tracking, and no vertexing. It's a gamble to predict how many papers we'll be able to write.

A pilot run on $Y(6 S)$ peak, even with only $20 \mathrm{fb}^{-1}$, will give us about the 10x data taken in Belle-I. IF machine people are willing to work so close to machine limits, this is the most interesting point, but many other thresholds open $50,100,200 \mathrm{MeV}$ above

Coupled channels effects studies are feasible at $10.65+10.75 \mathrm{GeV}$,
$200-300 \mathrm{fb}^{-1}$ at (and about) the $\mathrm{Y}(3 \mathrm{~S})$ will allow to publish >10 physics papers after the first year of data taking :

- BSM physics from $0++$ states - spectroscopy of D waves
- hindered radiative transitions - antitritium in Y decays
- many eta transitions

Eichten 2008: rethinking at CCCM

5th Belle-II Italian Meeting
R.Mussa, Bottomonium Physics at Belle-II

