
Bottomonium Physics at Roberto Mussa INFN Torino

Belle-II Italia 5th Meeting

Padova , May 30,2016

First question: where to run

Energy	Outcome	Lumi (fb ⁻¹)	Comments
Ƴ(1S) On	N/A	60+	-No interest identified for Phase 2 -Low energy
Ύ(2S) On	N/A	200	-No interest identified for Phase 2
Ύ(1D) Scan	Particle discovery	10-20	-Accessible in B Factories?
Ƴ(3S) On	Many topics	200+	-Known resonance -High luminosity requirement: Phase 3
Ύ(3S) Scan	Precision QED	~10	-Understanding of beam conditions needed
Ύ(2D) Scan	Particle discovery	10-20	-Unknown mass
Ύ(4S)+ Scan	Particle discovery?	10+?	-Energy to be determined
Y(6S) On	Particle discovery?	30+?	-Upper limit of machine energy
Single γ	New physics?	30+	-Special triggers required

Oggi parlero' di:

- grandezza e limiti della Y(6S) in phase II

- altre ragioni per fare Y(3S) in phase III

First question: where to run

		Y(6S))	Y	b?	Y(2	2D)	Y(1	D)			
Experiment	Scans/Off.	Res.	γ(!	5S)	$\Upsilon(\cdot)$	4S)	Υ((3S)	Υ(:	2S)	$\Upsilon(1)$	1S)
			10876	MeV	10580) MeV	1035	$5 \mathrm{MeV}$	10023	MeV	9460	MeV
	$\rm fb^{-1}$		$\rm fb^{-1}$	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	$\rm fb^{-1}$	10^{6}
CLEO	17.1		0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54		R_b s	scan	433	471	30	122	14	99	-	-
Belle	100		121	36	711	772	3	12	25	158	6	102

Prospects of a pilot run at Y(6S) in phase II More physics with 1 Billion Y(3S) in phase III

Boundary conditions

Goals of Phase 2

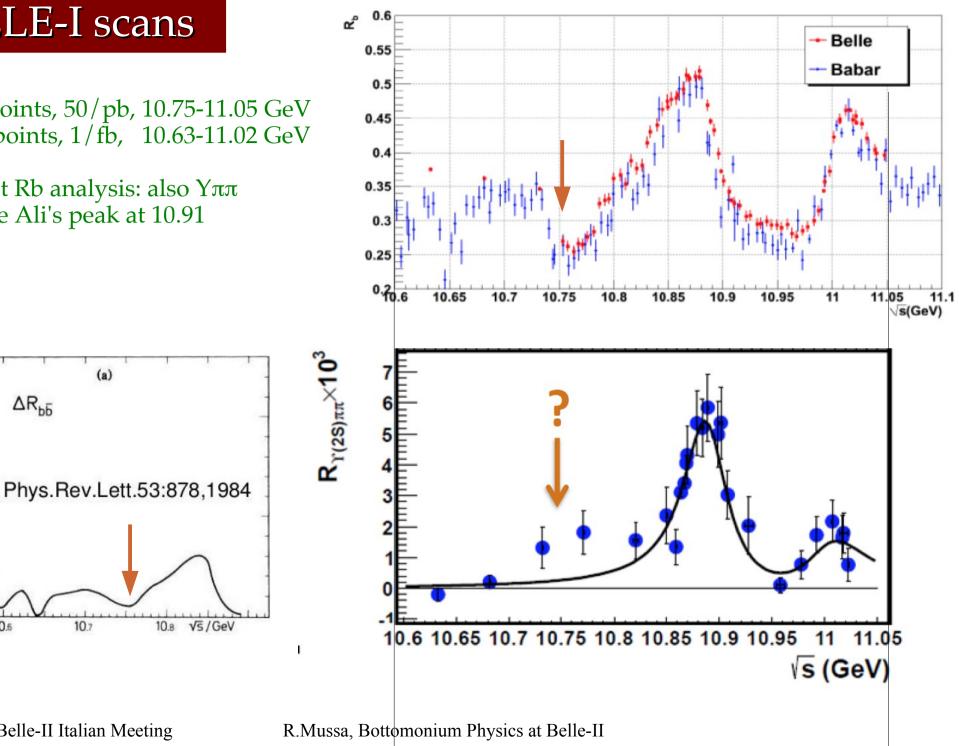
- Machine study for settings to reach high luminosity
- Understand beam background for safe VXD installation
- Establish conditions for stable machine operation
- Reach target luminosity of ~1x10³⁴ cm⁻² s⁻¹
- Phase 2 Operating Conditions
 - ~4-5mos. of machine studies, ~1-2mos. physics
 - Energy spread assumed to be ~5MeV (similar to Belle)
 - Maximum possible energy 11.06 11.25 GeV
 - Stable operation close to Y(4S) strongly preferred
 - Large uncertainty on Phase 2 luminosity (20±20 fb⁻¹)
- Phase 3
 - Operate at nominal conditions (1+x10³⁴ cm⁻² s⁻¹)
 - Some combination of $\Upsilon(4S)$ and other energies?

BELLE-I scans

- 61 points, 50/pb, 10.75-11.05 GeV - 16 points, 1/fb, 10.63-11.02 GeV

Not just Rb analysis: also $Y\pi\pi$ Exclude Ali's peak at 10.91

(a)


 $\Delta R_{b\bar{b}}$

-1.0

.5

10.55

10,6

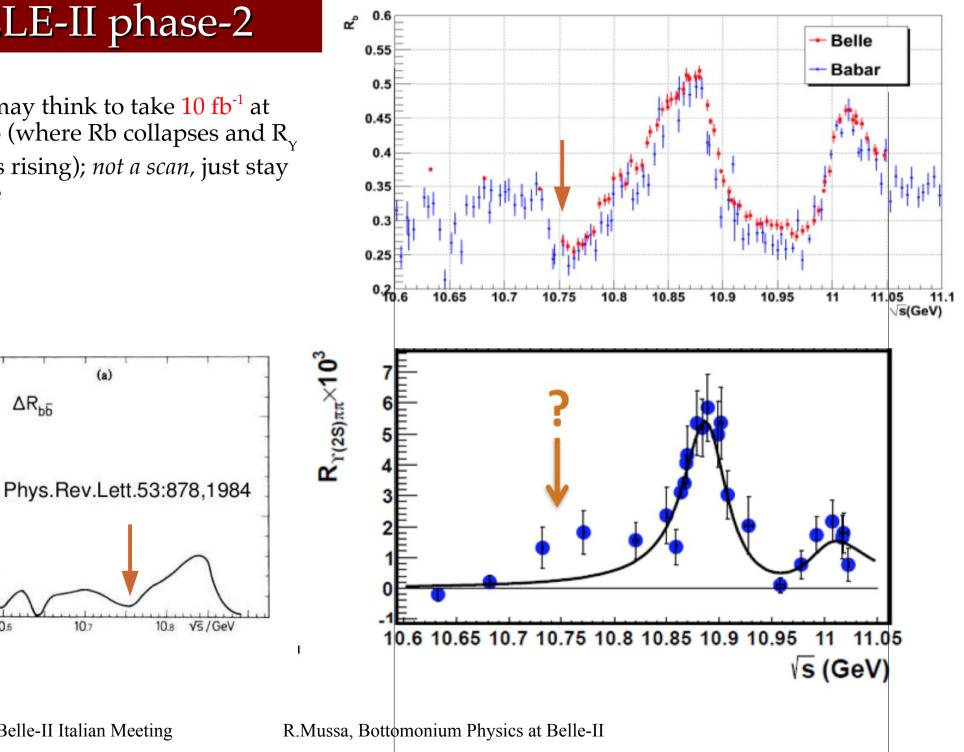
5th Belle-II Italian Meeting

10.7

BELLE-II phase-2

We may think to take 10 fb⁻¹ at 10.75 (where Rb collapses and R_{v} starts rising); not a scan, just stay there

(a)


 $\Delta R_{b\bar{b}}$

-1.0

.5

10.55

10,6

5th Belle-II Italian Meeting

10.7

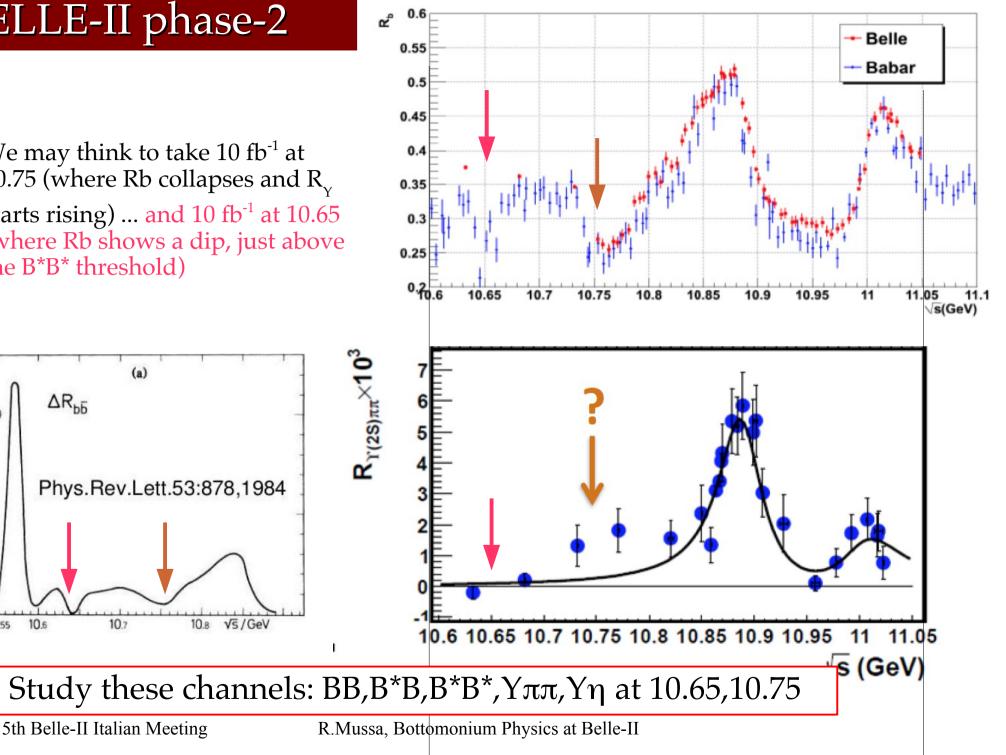
10.B

BELLE-II phase-2

We may think to take 10 fb⁻¹ at 10.75 (where Rb collapses and R_v starts rising) ... and 10 fb⁻¹ at 10.65 (where Rb shows a dip, just above the B*B* threshold)

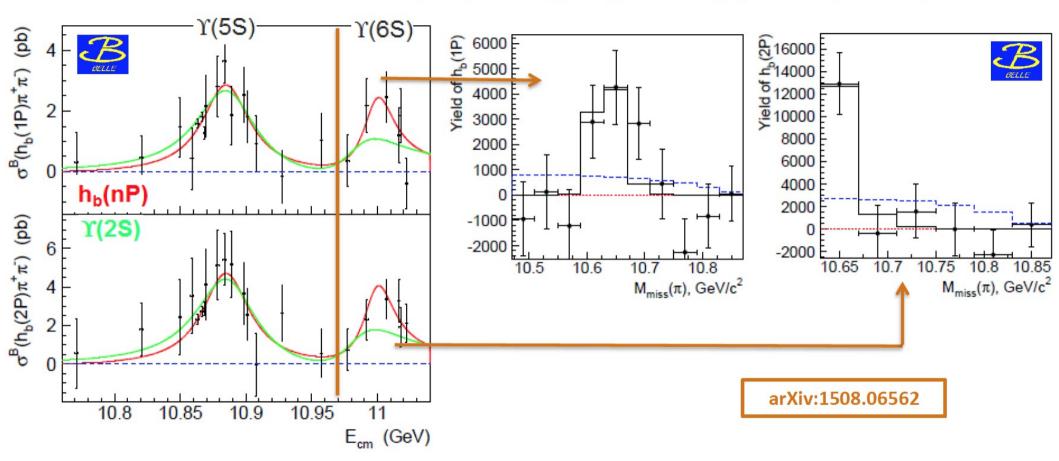
(a)

10.7

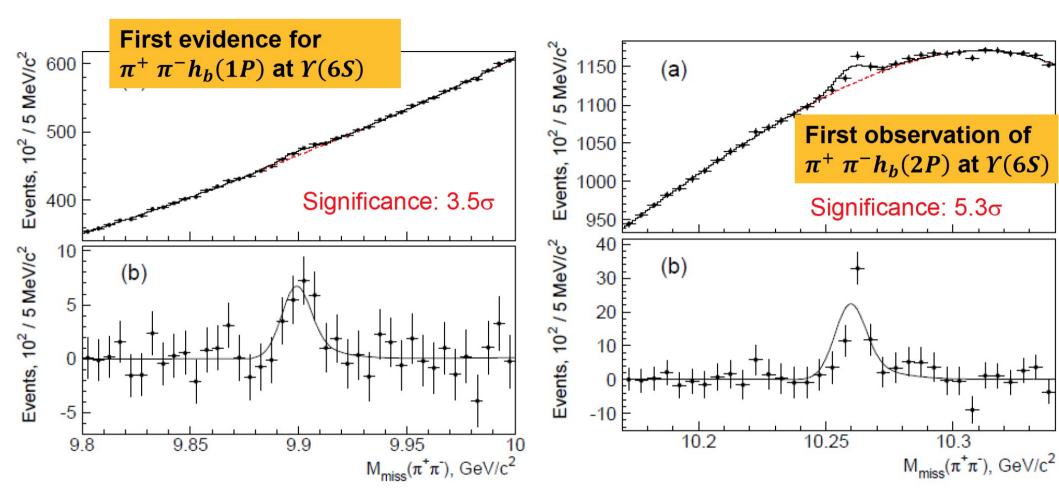

 $\Delta R_{b\bar{b}}$

-1.0

.5

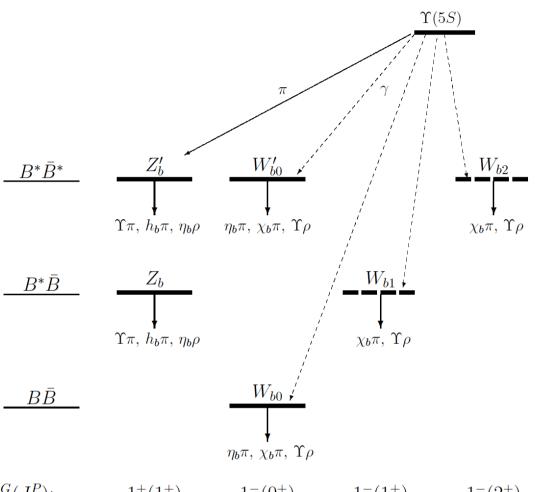

10.55

10,6


Y(6S) results in Belle-I

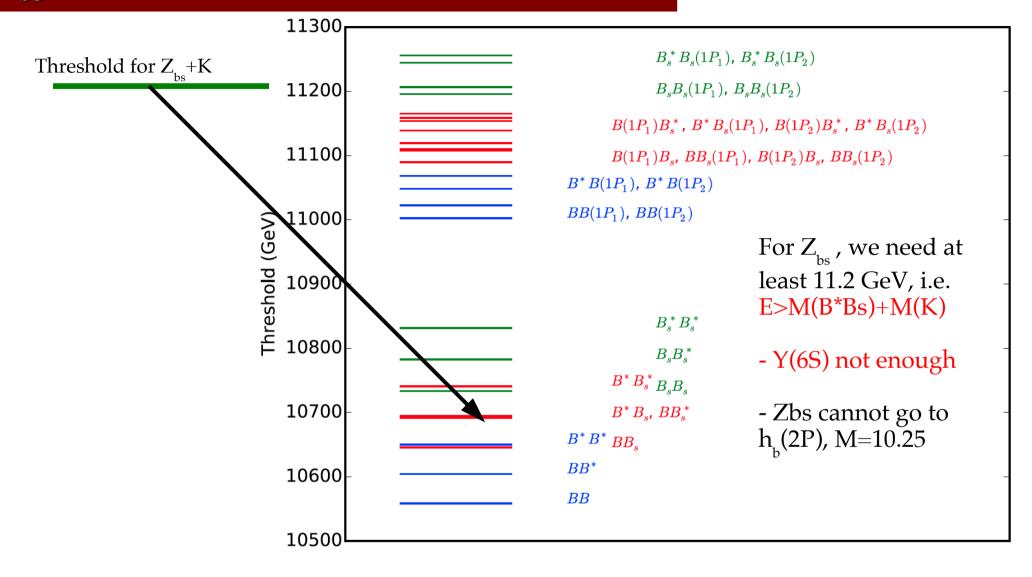
Preliminary evidence for $\Upsilon(6S) \rightarrow \pi \pi h_b(nP)$, via $\pi Z_b^{\pm}(106XX)$ decay

Resonance structure of $\Upsilon(6S) \rightarrow \pi \pi \Upsilon(pS)$ decays not fully studied


Y(6S) results in Belle-I

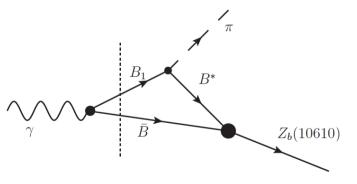
Significance figures include syst errors

(Voloshin at B2TIP-2016)


Voloshin has explored consequences of the molecular model to the spectrum of the Zb states: neutral partners (Wb) with J=0,1,2 are expected on the same energy range, and should be reachable from Y(5S) via radiative transitions.

► Important to find/exclude W_b states! $I^G(J^P)$: $1^+(1^+)$ $1^-(0^+)$ $1^-(1^+)$ $1^-(2^+)$

Intriguing possibility: search for strange bottomonium molecules, B^(*)_s B^(*) with mass 10.700÷10.750 GeV in e⁺e⁻ → Z_{bs} K around 10.4÷10.5 GeV. ?? probably meant 11.4-11.5



• With current (limited) statistics at $\Upsilon(6S)$ (~ 11.00 GeV):

$$\frac{\Upsilon(nS)\pi\pi}{h_b(kP)\pi\pi}\Big|_{\Upsilon(6S)} \approx \frac{\Upsilon(nS)\pi\pi|_{\mathrm{through}Z_b}}{h_b(kP)\pi\pi}\Big|_{\Upsilon(5S)}$$

I.e. at $\Upsilon(6S)$ essentially no non-resonant background not associated with $Z_b^{(')}$, unlike at $\Upsilon(5S)$. (The HQSS 'forbidden' channels $h_b(kP)\pi\pi$ go exclusively through the $Z_b^{(')}$ within either peak.)

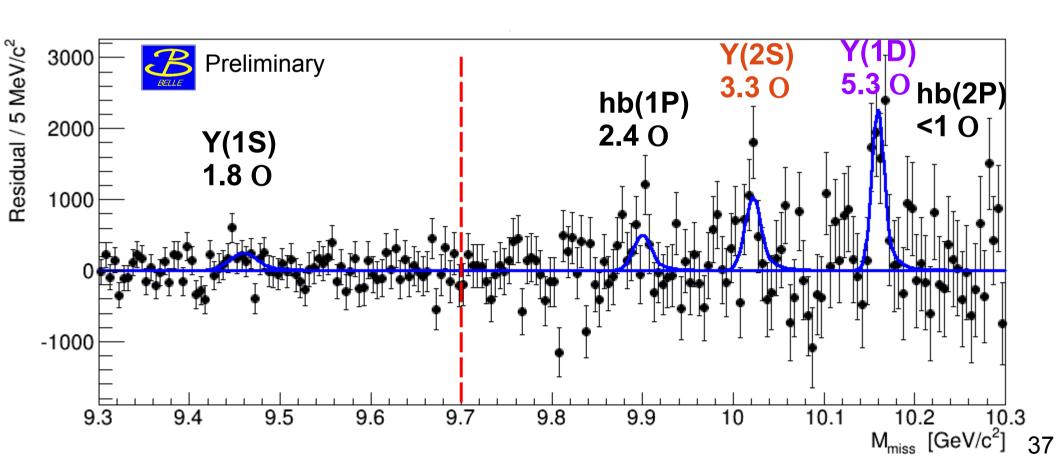
▶ 11006 MeV is the threshold for $B_1(5721)\overline{B}$. If the pair is produced near threshold, then a 'threshold triangle singularity' is possible with

 $Z_b(10610)$ [not the $Z_b(10650)$].

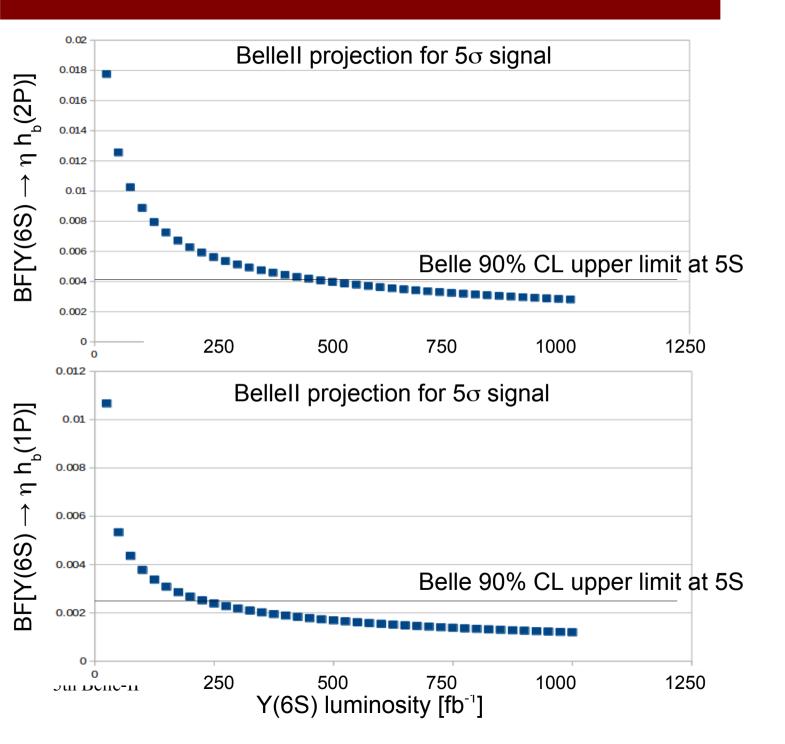
5th Belle-II Italian Meeting

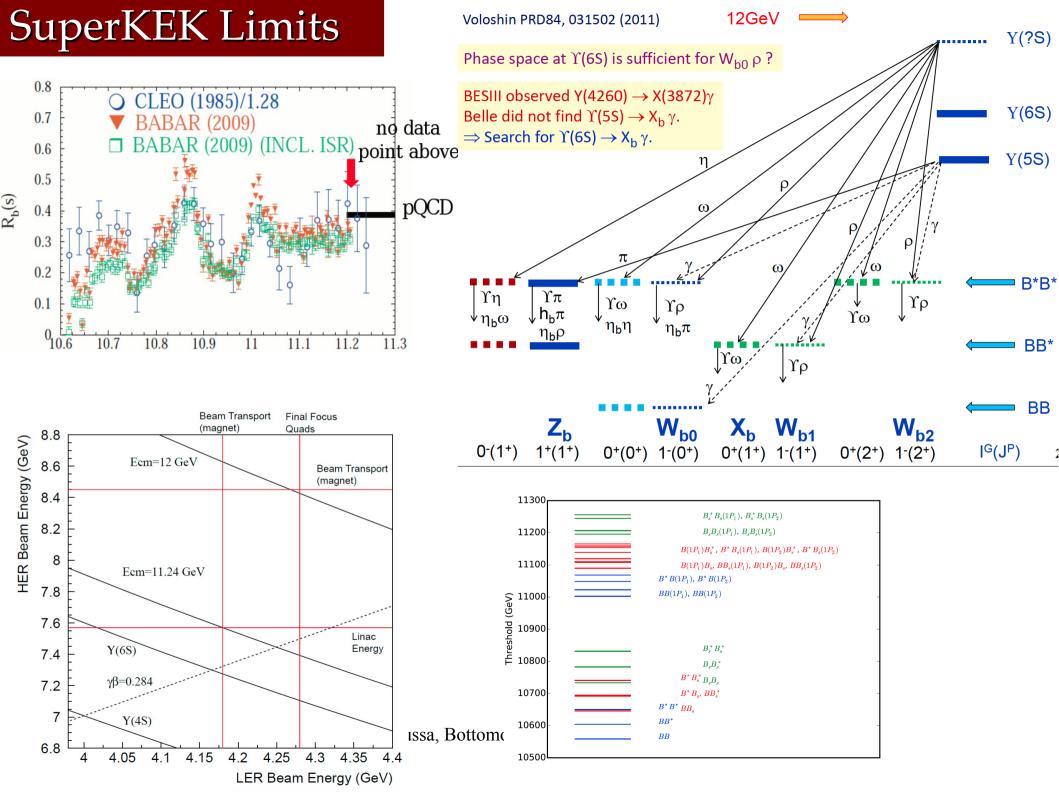
If this is the mechanism, then

- ► The production of final states with bottomonium at $\Upsilon(6S)$ proceed through the $Z_b(10610)$ resonance with no non-resonant background.
- Only the Z_b(10610) is present in the production channels, but not the Z_b(10650).
- ► There should be a detectable production of $B_1(5721)\overline{B} + c.c.$ heavy meson pairs in the threshold region. In particular, this should contribute to the yield of the final channel $(B^*\overline{B} + c.c.)\pi$, but not $B^*\overline{B}^*\pi$.
- The sub dominant decay of the B₁ meson, B₁ → Bππ, may provide, through a similar mechanism, a gateway to the expected at the BB̄ threshold resonance W_{b0} with I^G(J^P) = 1[−](0⁺).
- Additionally, there may be another similar bump at the c.m. energy around 11.06 GeV, near the threshold of $B_1\bar{B}^*$ and possibly $B_2\bar{B}^*$, where the production of channels with bottomonium may proceed through a mixture of the $Z_b(10610)$ and $Z_b(10650)$ resonances. (At present there is no appropriate data at e^+e^- energies above 11.02 GeV.)


- Exotics at heavy thresholds new nuclear physics
- Dominant correlations: molecular, hadro-quarkonium, di-diquark, mess?
- Forces in molecules. Guidance from spin. (HQSS OK in Z_b .)
- Unexpected LQSS?
- Expected new states (W_{bJ}, strange hidden-bottomonium). Requires venturing into higher energies, 11.5 GeV and above.
- Z_b(10610) and Z_b(10650) at ↑(6S) and beyond can have interesting features.
- Hadro-bottomonium? Requires searching beyond 11 GeV.

Y(5,6S) eta meson transitions


Assuming $\sigma(e^+e^- \rightarrow Y(5S)) = (0.340 \pm 0.016)$ nb


```
\begin{array}{lll} & \mathsf{BF}[Y(5S) \to \eta \; Y(2S)] \texttt{=} (2.1 \; \pm \; 0.7 \; \pm \; 0.3) \; x \; 10^{-3} \\ & \mathsf{BF}[Y(5S) \to \eta \; Y(1D)] \texttt{=} (2.8 \; \pm \; 0.7 \; \pm \; 0.4) \; x \; 10^{-3} \\ & \mathsf{BF}[Y(5S) \to \eta \; h_{_{b}}(1P)] < 3.3 \; x \; 10^{-3} & (90\% \; \text{CL}) \\ & \mathsf{BF}[Y(5S) \to \eta \; h_{_{b}}(2P)] < 3.7 \; x \; 10^{-3} & (90\% \; \text{CL}) \end{array}
```

Questions: large eta transitions also from Y(6S)? Is hb(3P) reachable with eta transitions?

Y(6S) eta meson transitions

BSM at Y(3S): $\chi_{b0}(1,2P)$ coupling to Light Higgs

Godfrey-Logan @ B2TIP-2016

$\chi_{b0} \rightarrow \tau \tau$: s-channel H_{125} and H_{new}

Matrix element (alignment limit for H_{125}):

$$\mathcal{M}^{H} = \langle \ell^{+}\ell^{-} | \frac{im_{\ell}}{v} \overline{\ell}\ell | 0 \rangle \frac{i}{M_{\chi_{b0}}^{2} - M_{H_{125}}^{2}} \langle 0 | \frac{im_{b}}{v} \overline{b}b | \chi_{b0} \rangle + \langle \ell^{+}\ell^{-} | \frac{im_{\ell} \tan \beta}{v} \overline{\ell}\ell | 0 \rangle \frac{i}{M_{\chi_{b0}}^{2} - M_{H_{new}}^{2}} \langle 0 | \frac{im_{b} \tan \beta}{v} \overline{b}b | \chi_{b0} \rangle$$

Including H_{new} exchange the partial width becomes:

$$\Gamma^{H}(\chi_{b0} \to \tau\tau) = \frac{M_{\chi_{b0}}}{8\pi} \left[1 - \frac{4m_{\tau}^{2}}{M_{\chi_{b0}}^{2}} \right]^{3/2} \left(\frac{m_{b}m_{\tau}}{v^{2}M_{H_{125}}^{2}} \right)^{2} f_{\chi_{b0}}^{2}$$
$$\times \left[1 + \frac{M_{H_{125}}^{2} \tan^{2}\beta}{M_{\text{new}}^{2} - M_{\chi_{b0}}^{2}} \right]^{2}$$

The Higgs-mediated BRs are also multiplied by this factor:

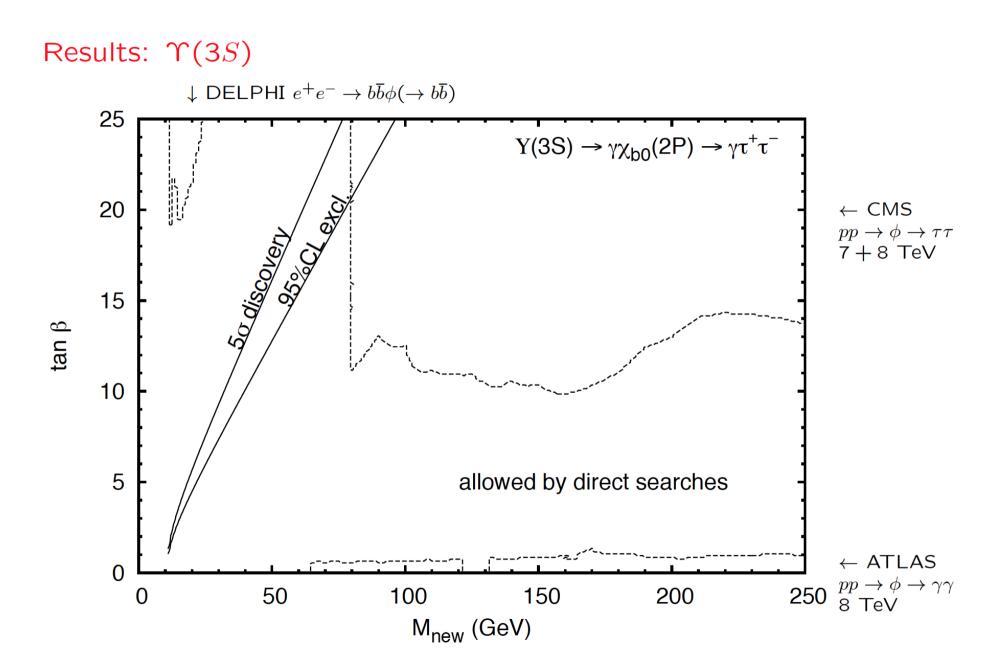
$$\begin{array}{l} \mathsf{BR}^{H}(\chi_{b0}(1P) \to \tau\tau) = 3.1 \times 10^{-13} \\ \mathsf{BR}^{H}(\chi_{b0}(2P) \to \tau\tau) = (1.9 \pm 0.5) \times 10^{-12} \end{array} \right\} \times \left[1 + \frac{M_{H_{125}}^{2} \tan^{2} \beta}{M_{\mathsf{new}}^{2} - M_{\chi_{b0}}^{2}} \right]^{2} \\ \text{Will only need } (M_{H_{125}}/M_{H_{\mathsf{new}}}) \tan \beta \sim 30 \text{ for } \mathcal{O}(100) \text{ signal events in } \Upsilon(3S) \to \gamma\chi_{b0}(2P) \to \gamma\tau\tau \end{array}$$

BSM at Y(3S): $\chi_{b0}(1,2P)$ coupling to Light Higgs

SuperKEKB/Belle-II offers a new era in high-statistics studies of scalar bottomonium via radiative Υ decays $\Upsilon \rightarrow \gamma \chi_{b0}$:

- 250 fb⁻¹ on $\Upsilon(3S) \rightarrow 5.9 \times 10^7 \chi_{b0}(2P) + 2.7 \times 10^6 \chi_{b0}(1P)$
- 250 fb⁻¹ on $\Upsilon(2S) \rightarrow 6.2 \times 10^7 \chi_{b0}(1P)$

 χ_{b0} has the same spin and CP quantum numbers as the Higgs. Can its decays be used to probe (BSM) Higgs physics?

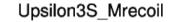

Precedents:

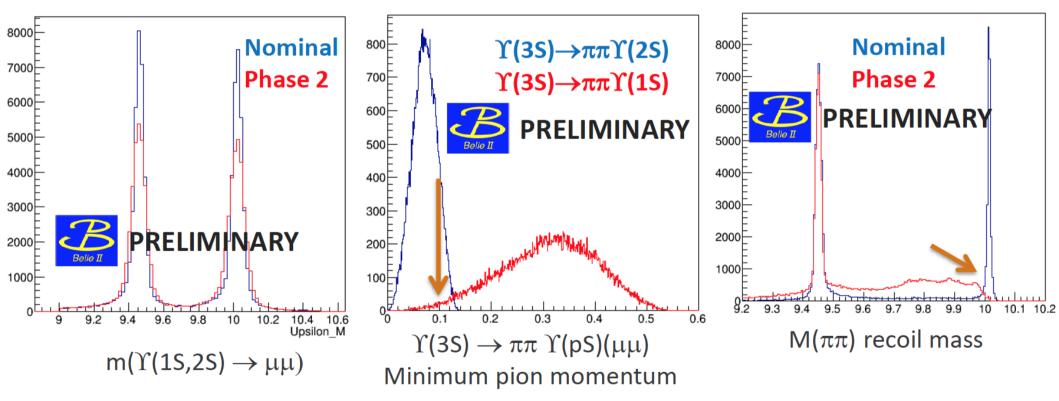
- $B^+
 ightarrow au^+
 u$ sensitive to s-channel charged Higgs Hou 1993
- $\eta_b \to \tau \tau$ sensitive to s-channel CP-odd Higgs $_{\text{Rashed}}$ et al 2010

 $\rightarrow \chi_{b0} \rightarrow \tau \tau$ should be sensitive to s-channel CP-even Higgs

Haber, Kane & Sterling, NPB 1979

BSM at Y(3S): $\chi_{b0}(1,2P)$ coupling to Light Higgs



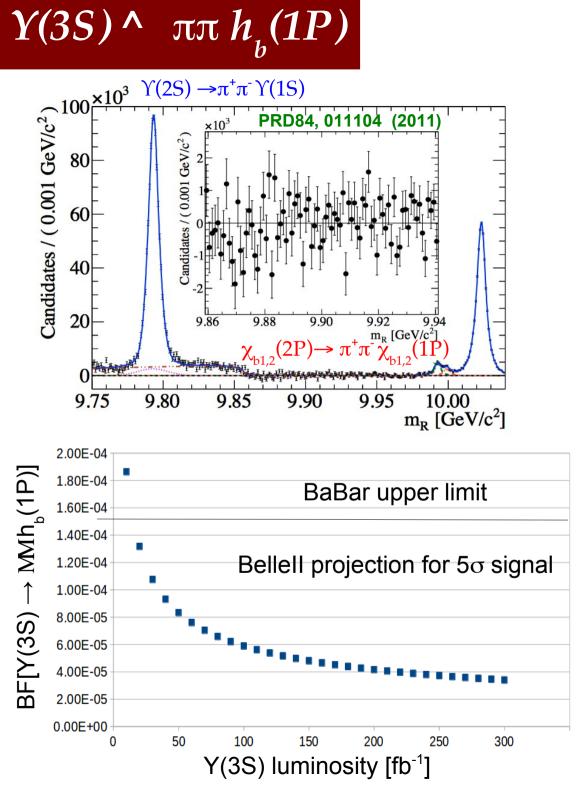

Direct search exclusions: HiggsBounds 4.2.0

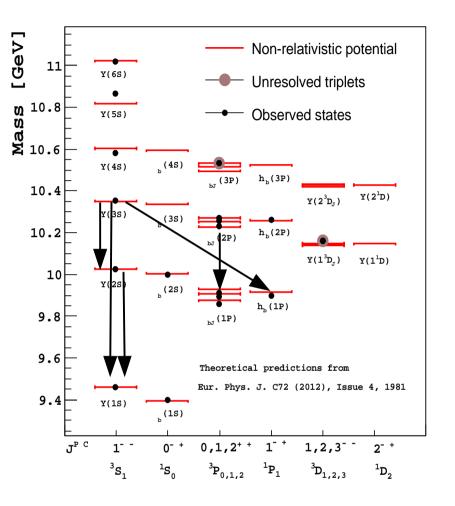
S. Godfrey and H.E. Logan, 1510.04659

Phase II Tracking

- $\blacktriangleright \Upsilon(3S) \rightarrow \pi^+ \pi^- \Upsilon(1S/2S) \rightarrow \mu^+ \mu^- MC (50/50 \text{ split})$
- lmpact of lack of VXD: $\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(2S)$ not feasible
- ▶ $\Upsilon(nS) \rightarrow \mu\mu$ mass resolution affected as well

Dipion transitions: BELLE-II vs Babar

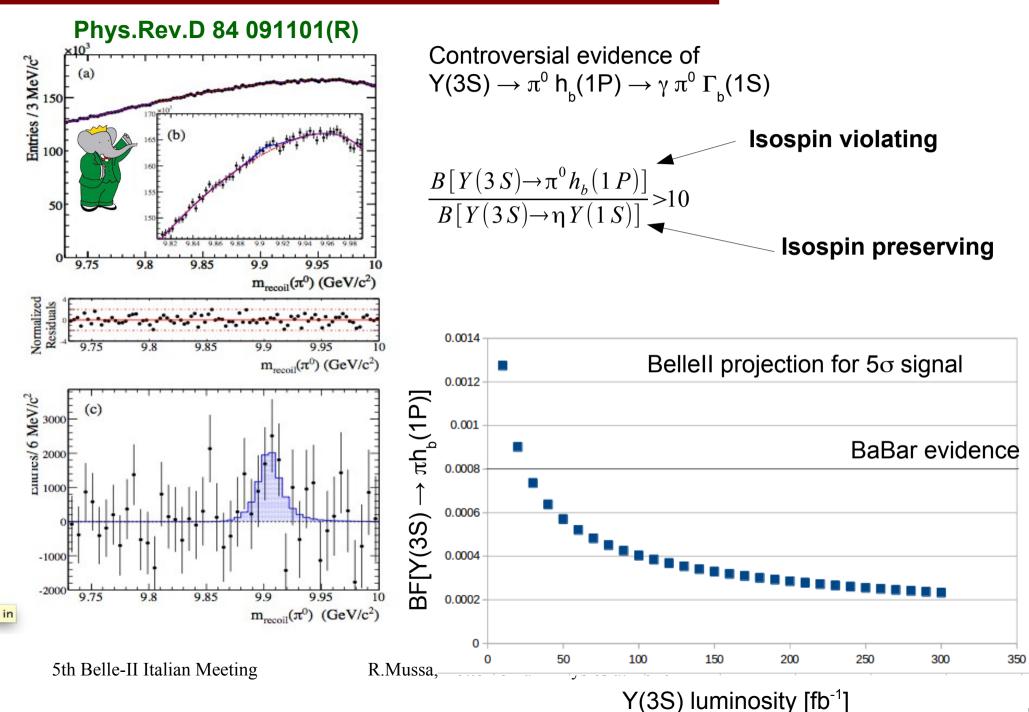

Tamponi @ B2TIP2016

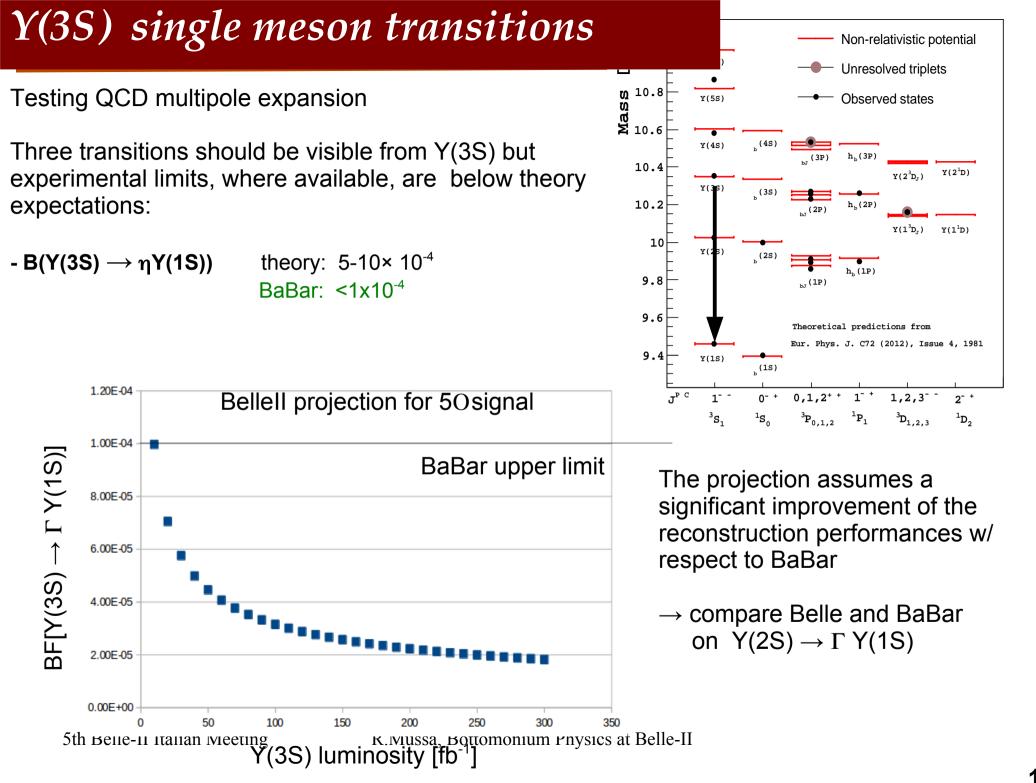


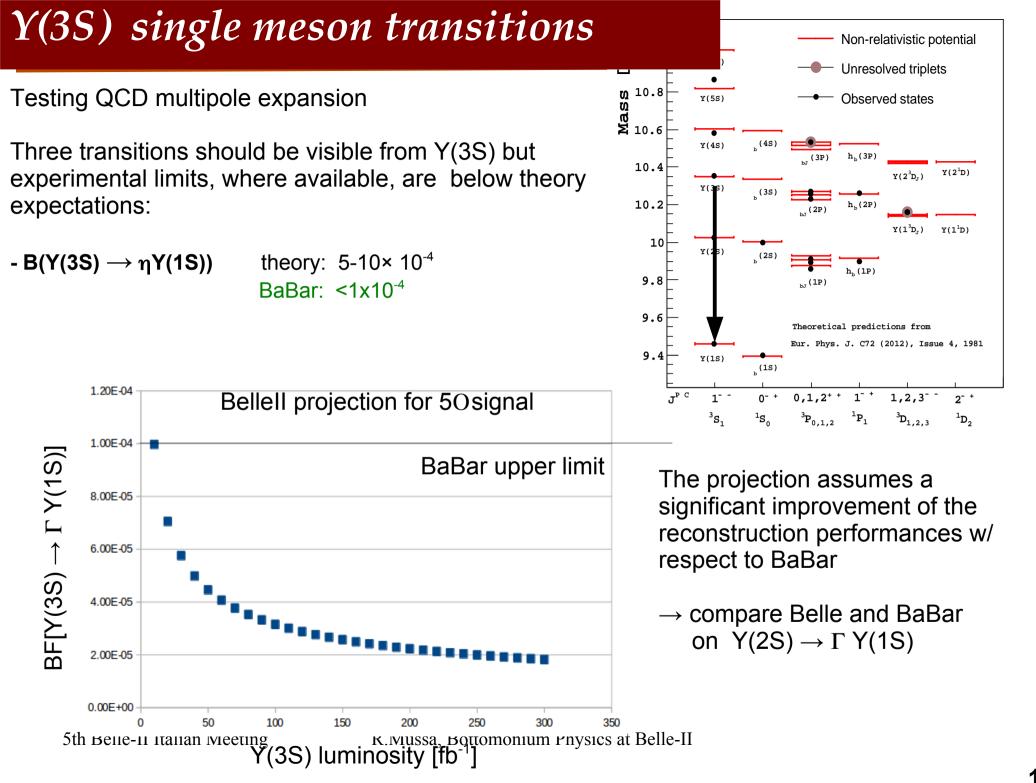
Better resolution and better efficiency

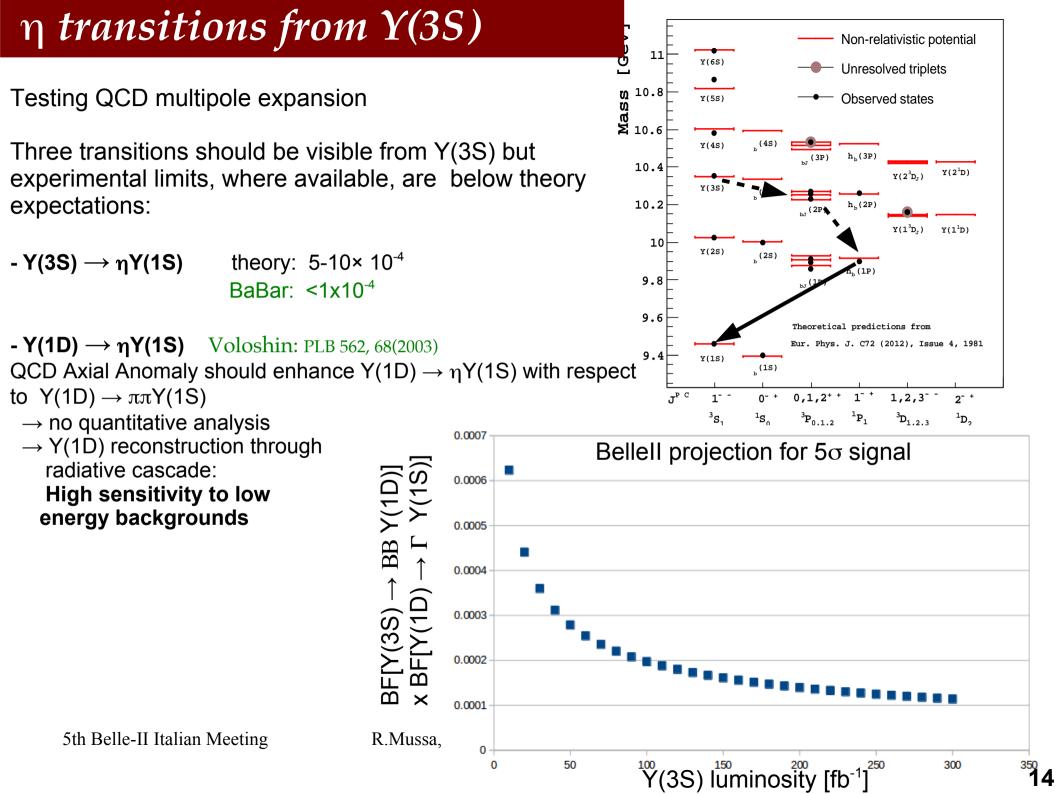
	BaBar σ	BaBar ε	Bellell σ	BelleII ε		
$Y(3S) \rightarrow Y(2S)$	~4 MeV	16.7 %	2.5 MeV	45%		
$Y(3S) \rightarrow Y(1S)$	< 4 MeV	41.8%	1.8 MeV	63%		
Sur Bene-II Italian Weeting K.Wussa, Bottomonium Physics at Bene-II						

$$Y(3S)^{(3S)}$$
 ππ $h_{b}(1P)$






Great improvement thanks to better resolution

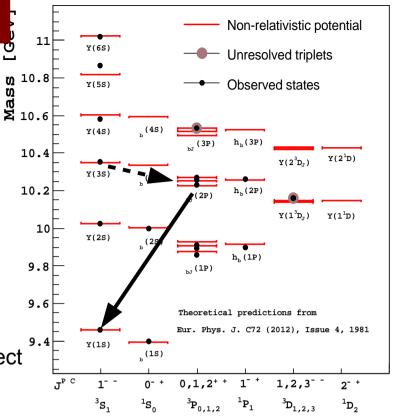

ics at Belle-II

Y(3S) single meson transitions

η *transitions from Y(3S)*

Testing QCD multipole expansion

Three transitions should be visible from Y(3S) but experimental limits, where available, are below theory expectations:


- Y(3S) $\rightarrow \eta$ Y(1S) theory: 5-10× 10⁻⁴ BaBar: <1x10⁻⁴

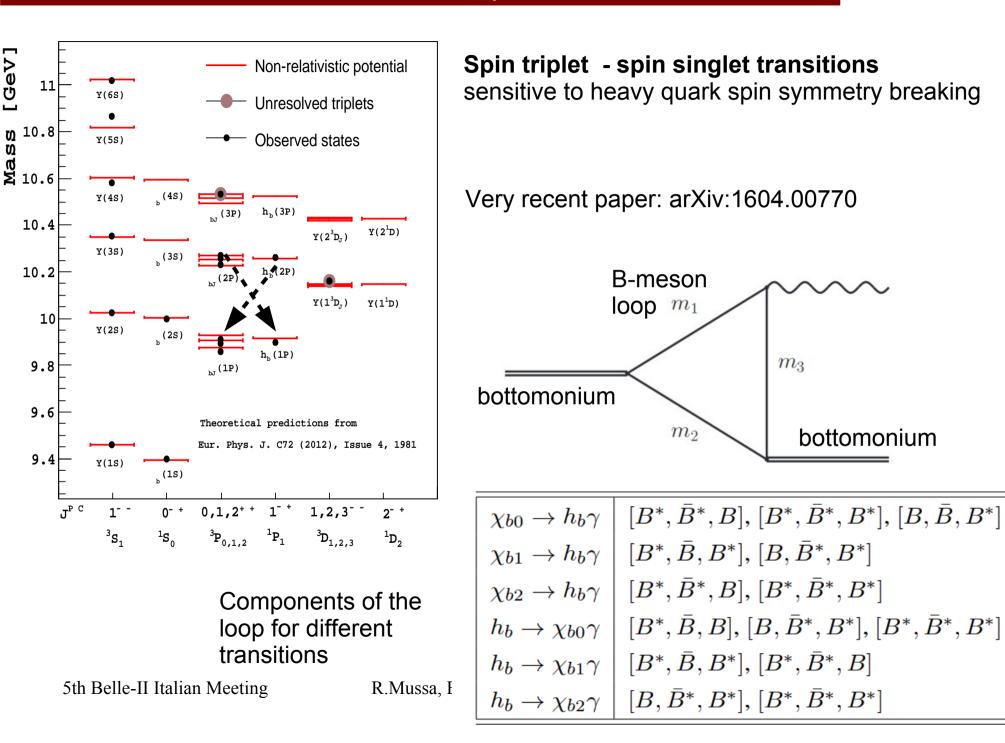
- Y(1D) $\rightarrow \eta$ Y(1S) Voloshin: PLB 562, 68(2003)

QCD Axial Anomaly should enhance $Y(1D) \rightarrow \eta Y(1S)$ with respect to $Y(1D) \rightarrow \pi \pi Y(1S)$

- \rightarrow no quantitative analysis
- → Y(1D) reconstruction through radiative cascade:
 High sensitivity to low energy backgrounds

 $\begin{array}{l} \begin{array}{l} \text{Voloshin: Mod.Phys.Lett. A19,} \\ \textbf{-} \chi_{b0}(\textbf{2P}) \rightarrow \eta \eta_{b} \end{array} \begin{array}{l} \begin{array}{l} 2895(2004) \\ \textbf{-} & \text{BF of the order of few 10^{-3} (S-wave)} \\ \textbf{-} & \text{Bellell estimate } \sim 40 \text{ M } \chi_{b0}(2\text{P}) \rightarrow \end{array} \begin{array}{l} \textbf{-} \textbf{10000 reconstructed events} \\ \textbf{-} & \text{full inclusive analysis, low energy photons: hard to estimate the backgrounds now...} \end{array}$

Y(3S) to Y(1³D_{1,2,3}) states via 4-photon cascades

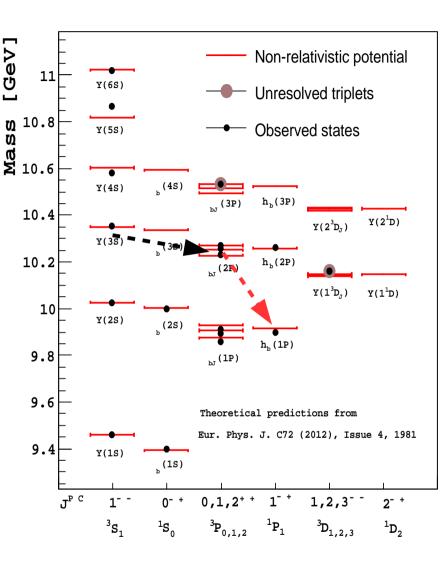

- Obtain event numbers by using Belle-BaBar cross section averages For $\Upsilon(3S)$ 250 fb⁻¹ yields 10⁹ $~\Upsilon(3S)~$ (about 7 times Belle-Babar)

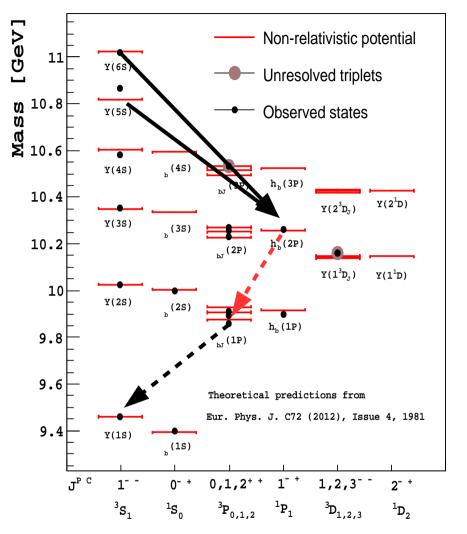
		Combined	Ev	ents
Parent	Decay chain	BR	pp	e^+e^-
$3^{3}S_{1}$	$ \stackrel{13.1\%}{\to} 2^{3} P_{2} \gamma(86.2) \stackrel{1.2\%}{\to} 1^{3} D_{3} \gamma(96.5) \stackrel{91.0\%}{\to} 1^{3} P_{2} \gamma(256.0) \stackrel{19.1\%}{\to} 1^{3} S_{1} \gamma(441.6) \stackrel{2.48\%}{\to} \mu^{+} \mu^{-} $	$6.8 imes 10^{-6}$	2100	6800
	$ \overset{13.1\%}{\to} 2^{3} P_{2} \gamma(86.2) \overset{0.2\%}{\to} 1^{3} D_{2} \gamma(104.4) \overset{22\%}{\to} 1^{3} P_{2} \gamma(248.4) \overset{19.1\%}{\to} 1^{3} S_{1} \gamma(441.6) \overset{2.48\%}{\to} \mu^{+} \mu^{-} $	2.7×10^{-7}	84	270
	$ \overset{13.1\%}{\rightarrow} 2^{3} P_{2} \gamma(86.2) \overset{0.2\%}{\rightarrow} 1^{3} D_{2} \gamma(104.4) \overset{74.7\%}{\rightarrow} 1^{3} P_{1} \gamma(267.3) \overset{33.9\%}{\rightarrow} 1^{3} S_{1} \gamma(423.0) \overset{2.48\%}{\rightarrow} \mu^{+} \mu^{-} $	$1.6 imes 10^{-6}$	500	1600
Interested in	$ \overset{13.1\%}{\rightarrow} 2^{3} P_{2} \gamma(86.2) \overset{0.02\%}{\rightarrow} 1^{3} D_{1} \gamma(78.0) \overset{1.6\%}{\rightarrow} 1^{3} P_{2} \gamma(239.1) \overset{19.1\%}{\rightarrow} 1^{3} S_{1} \gamma(441.6) \overset{2.48\%}{\rightarrow} \mu^{+} \mu^{-} $	$2.0 imes 10^{-9}$	0.6	2
Υ(3 S)	$ \overset{13.1\%}{\to} 2^{3} P_{2} \gamma(86.2) \overset{0.02\%}{\to} 1^{3} D_{1} \gamma(78.0) \overset{28\%}{\to} 1^{3} P_{1} \gamma(258.0) \overset{33.9\%}{\to} 1^{3} S_{1} \gamma(423.0) \overset{2.48\%}{\to} \mu^{+} \mu^{-} $	$6.2 imes 10^{-8}$	19	62
	$ \overset{13.1\%}{\rightarrow} 2^{3} P_{2} \gamma(86.2) \overset{0.02\%}{\rightarrow} 1^{3} D_{1} \gamma(78.0) \overset{47.1\%}{\rightarrow} 1^{3} P_{0} \gamma(290.5) \overset{1.76\%}{\rightarrow} 1^{3} S_{1} \gamma(391.1) \overset{2.48\%}{\rightarrow} \mu^{+} \mu^{-} $	$5.4 imes 10^{-9}$	2	5
decay	$ \overset{13.1\%}{\to} 2^{3} P_{2} \gamma(86.2) \overset{0.02\%}{\to} 1^{3} D_{1} \gamma(78.0) \overset{0.00393\%}{\to} \mu^{+} \mu^{-} $	$1.0 imes 10^{-9}$	0.3	1
chains via	$ \overset{12.6\%}{\to} 2^{3} P_{1} \gamma (99.3) \overset{1.9\%}{\to} 1^{3} D_{2} \gamma (91.3) \overset{22\%}{\to} 1^{3} P_{2} \gamma (248.4) \overset{19.1\%}{\to} 1^{3} S_{1} \gamma (441.6) \overset{2.48\%}{\to} \mu^{+} \mu^{-} $	$2.5 imes 10^{-6}$	780	2500
unobserved	$ \stackrel{12.6\%}{\to} 2^{3}P_{1}\gamma(99.3) \stackrel{1.9\%}{\to} 1^{3}D_{2}\gamma(91.3) \stackrel{74.7\%}{\to} 1^{3}P_{1}\gamma(267.3) \stackrel{33.9\%}{\to} 1^{3}S_{1}\gamma(423.0) \stackrel{2.48\%}{\to} \mu^{+}\mu^{-} $	$1.5 imes 10^{-5}$	4650	15,000
1D states	$ \stackrel{12.6\%}{\to} 2^{3} P_{1} \gamma (99.3) \stackrel{0.80\%}{\to} 1^{3} D_{1} \gamma (100.8) \stackrel{1.6\%}{\to} 1^{3} P_{2} \gamma (239.1) \stackrel{19.1\%}{\to} 1^{3} S_{1} \gamma (441.6) \stackrel{2.48\%}{\to} \mu^{+} \mu^{-} $	$7.6 imes10^{-8}$	24	76
1D otatoo	$ \stackrel{12.6\%}{\to} 2^{3}P_{1}\gamma(99.3) \stackrel{0.80\%}{\to} 1^{3}D_{1}\gamma(100.8) \stackrel{28\%}{\to} 1^{3}P_{1}\gamma(258.0) \stackrel{33.9\%}{\to} 1^{3}S_{1}\gamma(423.0) \stackrel{248\%}{\to} \mu^{+}\mu^{-} $	$2.4 imes 10^{-6}$	740	2400
	$ \overset{12.6\%}{\to} 2^{3} P_{1} \gamma (99.3) \overset{0.80\%}{\to} 1^{3} D_{1} \gamma (100.8) \overset{47.1\%}{\to} 1^{3} P_{0} \gamma (290.5) \overset{1.76\%}{\to} 1^{3} S_{1} \gamma (391.1) \overset{2.48\%}{\to} \mu^{+} \mu^{-} $	2.1×10^{-7}	65	210
	$ \overset{5.9\%}{\to} 2^{3}P_{0}\gamma(122.0) \overset{0.4\%}{\to} 1^{3}D_{1}\gamma(78.0) \overset{1.6\%}{\to} 1^{3}P_{2}\gamma(239.1) \overset{19.1\%}{\to} 1^{3}S_{1}\gamma(441.6) \overset{2.48\%}{\to} \mu^{+}\mu^{-} $	$1.8 imes 10^{-8}$	6	18
	$ \overset{5.9\%}{\to} 2^{3}P_{0}\gamma(122.0) \overset{0.4\%}{\to} 1^{3}D_{1}\gamma(78.0) \overset{28\%}{\to} 1^{3}P_{1}\gamma(258.0) \overset{33.9\%}{\to} 1^{3}S_{1}\gamma(423.0) \overset{2.48\%}{\to} \mu^{+}\mu^{-} $	$5.6 imes 10^{-7}$	170	560
	$ \stackrel{5.9\%}{\to} 2^{3}P_{0}\gamma(122.0) \stackrel{0.4\%}{\to} 1^{3}D_{1}\gamma(78.0) \stackrel{47.1\%}{\to} 1^{3}P_{0}\gamma(290.5) \stackrel{1.76\%}{\to} 1^{3}S_{1}\gamma(391.1) \stackrel{2.48\%}{\to} \mu^{+}\mu^{-} $	$4.8 imes 10^{-8}$	15	48
$3^{1}S_{0}$	$\stackrel{1.8\times10^{-6}}{\to} 2^3 S_1 \gamma(309.2) \stackrel{1.93\%}{\to} \mu^+ \mu^-$	$3.4 imes10^{-8}$	5	NA
	$ \stackrel{1.5\times10^{-5}}{\to} 1^{3}S_{1}\gamma(840.0) \stackrel{2.48\%}{\to} \mu^{+}\mu^{-} $	$3.7 imes 10^{-7}$	52	NA

Problem : QED+beam backgrounds, to be estimated

5th Belle-II Italian Meeting

Hindered M1 transitions from Y(3S)





 m_3

bottomonium

Hindered M1 transitions between P waves

Experimentally unexplored territory

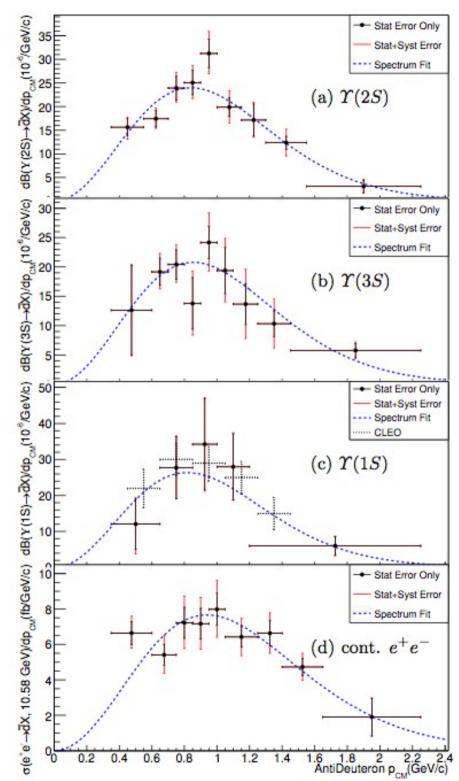
 $\chi_{h_{H}}(2P) \rightarrow \gamma h_{h_{H}}(2P)$

- \rightarrow requires Y(3S) data
- \rightarrow requires Y(5,6S) data

 $h_{_{h}}(2P) \rightarrow \gamma \chi_{_{h,l}}(1P)$

Antinuclei in Y(3S) decays

CLEO results :


$$\mathcal{B}^{\text{dir}}(\Upsilon(1S) \to \bar{d}X) = (3.36 \pm 0.23 \pm 0.25) \times 10^{-5}.$$

$$\mathcal{B}(\Upsilon(2S) \to \bar{d} + X) = (3.37 \pm 0.50 \pm 0.25) \times 10^{-5}$$

BABAR results :

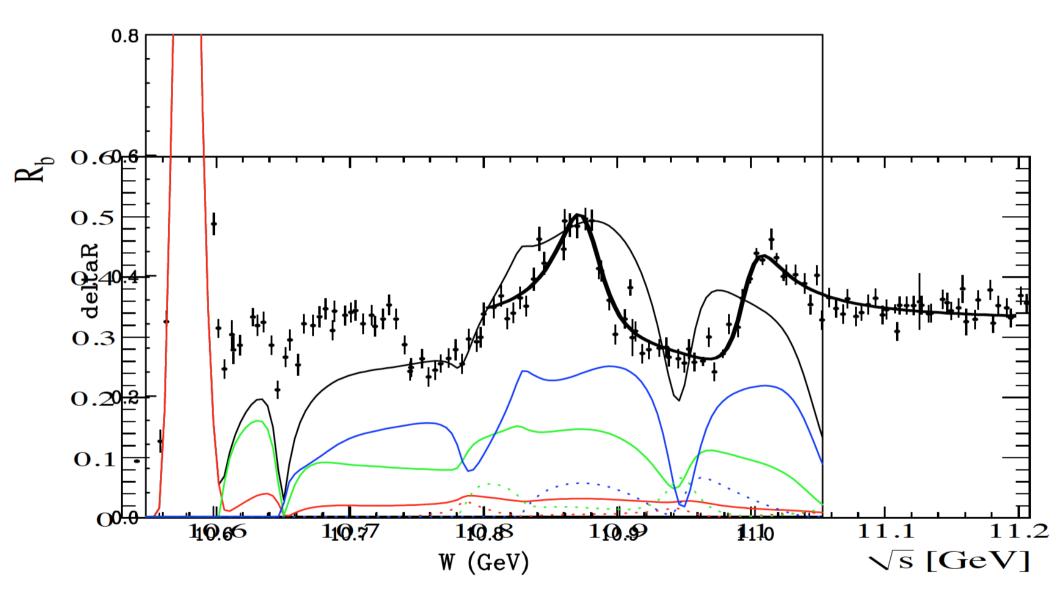
Resonance	Onpeak	# of Υ Decays	Offpeak			
$\Upsilon(4S)$	$429{ m fb}^{-1}$	$463 imes 10^6$	$44.8\mathrm{fb}^{-1}$			
$\Upsilon(3S)$	$28.5\mathrm{fb}^{-1}$	116×10^{6}	$2.63{ m fb}^{-1}$			
$\Upsilon(2S)$	$14.4\mathrm{fb}^{-1}$	$98.3 imes 10^6$	$1.50\mathrm{fb}^{-1}$			
Process		Rate				
$\mathcal{B}(\Upsilon(3S) o ar{d})$	X)	$(2.33\pm0.15^{+0}_{-0})$	$(2.33 \pm 0.15^{+0.31}_{-0.28}) imes 10^{-5}$			
$\mathcal{B}(\Upsilon(2S) o ar{d})$	X)	$(2.64\pm0.11^{+0}_{-0}$	$(2.64\pm0.11^{+0.26}_{-0.21})\! imes\!10^{-5}$			
$\mathcal{B}(\Upsilon(1S) o \bar{d})$	X)	$(2.81\pm0.49^{+0}_{-0})$	$_{0.24}^{0.20}) imes 10^{-5}$			
$\sigma(e^+e^- \to \bar{d}X$	() $\left[\sqrt{s} \approx 10.58\mathrm{G}\right]$	GeV] $(9.63 \pm 0.41^{+1}_{-1})$	$^{.17}_{.01}$) fb			
$rac{\sigma(e^+e^- ightarrow { m Ha})}{\sigma(e^+e^- ightarrow { m Ha})}$		$(3.01\pm0.13^{+0}_{-0})$	$^{0.37}_{0.31}) \times 10^{-6}$			

With 0.8-1 Billion Y(3S) decays, we can <u>search for anti-tritium and He-3 production in</u> <u>botto Rollinium</u> R.Mussa, Bottomonium I

Conclusions

We may be able to do some valuable physics during phase-II run, without low momentum tracking, and no vertexing. It's a gamble to predict how many papers we'll be able to write.

A pilot run on Y(6S) peak, even with only 20fb⁻¹, will give us about the 10x data taken in Belle-I. IF machine people are willing to work so close to machine limits, this is the most interesting point, but many other thresholds open 50, 100, 200 MeV above


Coupled channels effects studies are feasible at 10.65 +10.75 GeV,

200-300 fb⁻¹ at (and about) the Y(3S) will allow to publish >10 physics papers after the first year of data taking :

- BSM physics from 0++ states spectroscopy of D waves
- hindered radiative transitions antitritium in Y decays

- many eta transitions

Eichten 2008: rethinking at CCCM

