Flavor tagging of neutral D mesons

Giacomo De Pietro

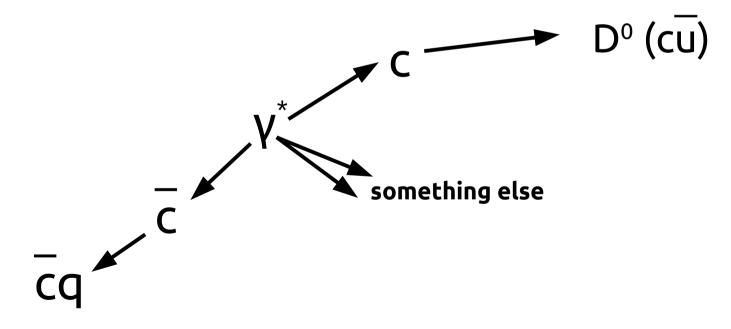
Università di Pisa; INFN Pisa

5th Belle II Italian Meeting 30 May 2016 @ Padova

D^{0} production in a $c\overline{c}$ event

Number of D0 per ccbar event D0 per event Eve8 90000 Entries 100000 Mean 1.123 RMS 0.7018 40000 In 100k cc events there are 30000 112k generated D^o (at the generator level, no 20000 reconstruction). 10000 3 3.5 4 4.5 Number of D0 per event These D^o come from:

- 41% directly from virtual photons ($e^+e^- \rightarrow \gamma^* \rightarrow D^0 X$)
- 35% from D^{*0} (D^{*0} → D⁰ π⁰)
- 24% from $D^{*+}(D^{*+} \rightarrow D^0 \Pi^+) \leftarrow$ only these used for CP violation analysis:
 - п charge tags the D^o flavour
 - improves the combinatorial background rejection

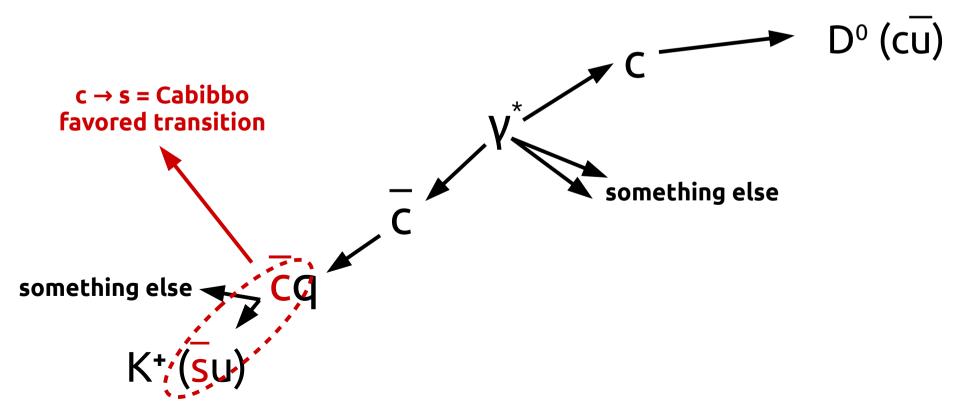

Can we recover at least a fraction of the ³/₄ of D⁰ produced for CP violation analysis?

The idea

The purpose of my work is to study an alternative method to tag the flavor of a D⁰, without the strong request that it is generated by a D^{*+}:

- increasing the statistics
- providing control samples for other analysis
 - → time-dependent CPV measurement thanks to the 2x improved resolution on the proper time

The idea is to tag the D^o flavor by looking at the **Rest of the Event** (= **ROE**, i.e. particles not coming from the decay of signal D^o).

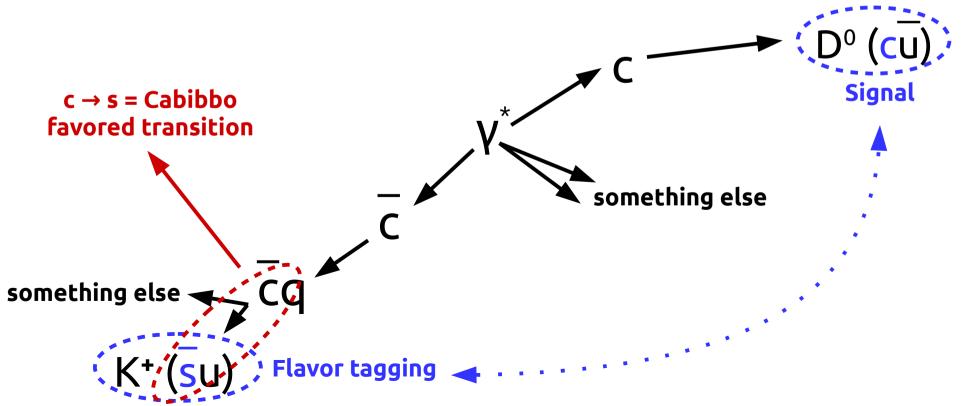


The idea

The purpose of my work is to study an alternative method to tag the flavor of a D⁰, without the strong request that it is generated by a D^{*+}:

- increasing the statistics
- providing control samples for other analysis
 - → time-dependent CPV measurement thanks to the 2x improved resolution on the proper time

The idea is to tag the D^o flavor by looking at the **Rest of the Event** (= **ROE**, i.e. particles not coming from the decay of signal D^o).

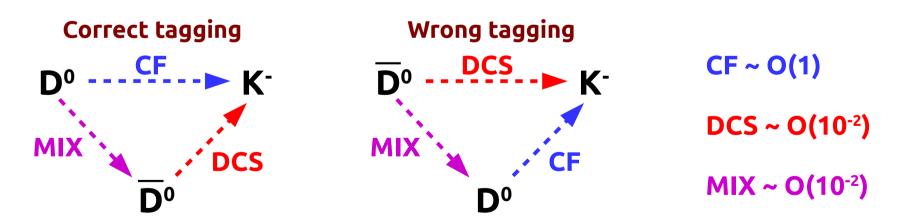


The idea

The purpose of my work is to study an alternative method to tag the flavor of a D⁰, without the strong request that it is generated by a D^{*+}:

- increasing the statistics
- providing control samples for other analysis
 - → time-dependent CPV measurement thanks to the 2x improved resolution on the proper time

The idea is to tag the D^o flavor by looking at the **Rest of the Event** (= **ROE**, i.e. particles not coming from the decay of signal D^o).



Requirements on the events

This tagging technique can be applied to events with the following charateristics:

- 1) only **1 K⁺ candidate in the ROE**
- 2) only **1** D° in the event to avoid mistagging from $D^{\circ}-\overline{D}^{\circ}$ mixing J (ge

The second requirement is more philosophical than pratical:

As first approach, I have discarded events with one or more D^o in the ROE.

Signal and background events

A correctly tagging K⁺ comes from a D⁻ or a Λ_c⁻. Examples of signal events (~ 54% of cc events with 1 D⁰ & 1 K⁺ in **ROE**) are:

$$c \ \overline{c} \rightarrow D^{0} \ D^{-} \ X \ ; \ D^{0} \rightarrow X \ ; \ D^{-} \rightarrow \mathbf{K}^{+} \ \Pi^{-} \ e^{-} \ \overline{v}_{e}^{-}$$

$$D^{-} \rightarrow K^{*0} \ e^{-} \ \overline{v}_{e}^{-} \ ; \ K^{*0} \rightarrow \mathbf{K}^{+} \ \Pi^{-}$$

$$c \ \overline{c} \rightarrow D^{0} \ \Lambda_{c}^{-} \ X \ ; \ D^{0} \rightarrow X \ ; \ \Lambda_{c}^{-} \rightarrow \Delta^{--} \ K^{*+} \ ; \ K^{*+} \rightarrow \mathbf{K}^{+} \ \Pi^{0}$$

Background events (~ 46%) are the following ones:

1) Doubly Cabibbo Suppres. decay of D⁻ (eg. D⁻ \rightarrow K⁻ π^{0}): ~ 9.5% 2) DCS decay of charmed baryons (eg. $\Lambda_{c}^{-} \rightarrow \Xi^{+}$ K⁻ π^{+}): ~ 6%

3) ccss events: ~ 84.5%

3a) K⁻/K⁺ directly from hadronization of s quark (K⁻/K⁺ from γ^{*}) ~ 76.2%
3b) K⁻/K⁺ from the decay of D_s⁺/D_s⁻ : ~ 8.3%

Data referred to cc events at generator level!

Let's have a look to reconstructed events

New backgrounds from reconstruction:

 \rightarrow K⁻ from D⁰ not reconstructed

 \rightarrow Events with not reconstructed K⁻ (they seem events with only 1 K⁻ in ROE)

 \rightarrow Events with fake K⁻

Limits from kinematics:

 \rightarrow K⁻ from γ^* has low p_{τ} and therefore the resolution on the impact parameters is deteriored by multiple scattering

Reconstruction software:

 \rightarrow The reconstruction of K_L has a very poor purity

→ Improvements on selection of Final State Particles and reconstruction of composite states is expected

Veto events with D^o in the Rest of Event

I have processed 1M cc event and searched D^os in these channels:

- D⁰ → K⁻ π^+ π^0 (BR = 14.3%)
- D⁰ → K⁻ π⁺ π⁻ π⁺ (BR = 8.07%)
- D⁰ → K⁻ п⁺ п⁻ п⁺ п⁰ (BR = 4.2%)
- D⁰ → K⁻ π⁺ (BR = 3.93%)
- D^o → K⁻ K⁺ (BR = 0.4%)

The **average** efficiency of D^o reconstruction is ~ 20%.

As a consequence, only ~ 6% of events with more than 1 D^o are reconstructed.

Background (?) from D^o not reconstructed

At present, a veto can be applied only on ~ 6% of events with 2 D^os.

The expected background from not reconstructed D^o in the ROE is:

(1 − 6%) · 40% ~ 38%.

A dedicated effort is needed to improve:

- the efficiency of reconstruction (hard to go significantly beyond 20%)
- the number of D^o channels (many channels with small BR)

As shown before, mixing in the charm sector is small: **a D**⁰ **decays before starting to mix with D**⁰.

So, the mistagging caused by DCS decays of D0 is comparable with the one caused by mixing.

Reconstruction of K⁺ in the Rest of Event

My aim is to recognise events with only 1 K⁺ in ROE.

The reconstruction of K⁺ introduces new types of background events:

1) an event with a misidentified K⁺ (mainly real p or π[±])
 → no correlation between the charge of K⁺ and flavor of D⁰

2) an event with a not reconstructed K⁺
 → this modifies the number of K⁺ in the rest of event

3) an event with a tagging K⁺ reconstructed with the wrong charge
 → negligible contribute

So, the reconstruction of K⁺ is a **non-trivial** part of my analysis:

 \rightarrow I don't want **too much tight** requirements to avoid to **lose some K**⁺ and miscalculate the number of K⁺;

→ I don't want **too much loose** requirements to avoid to introduce a **large number of fake K**⁺.

11

Reconstruction of K⁺: several approaches

To reconstruct the K⁺s I tried several approaches:

- PID(K) > 0.5

→ Purity of reconstructed K⁺: ~ 64.0%

 \rightarrow "Purity" of events with 1 K⁺: ~62.3%

- PID(K) > 0.5 & PID(p) < 0.995 & PID(n) < 0.2

 \rightarrow Purity of reconstructed K⁺: ~ 81.1%

 \rightarrow "Purity" of events with 1 K⁺: ~69.8%

- PID(K) > 0.5 & PID(p) < 0.995 & PID(π) < 0.2
- + Selection of events with 1 K in ROE
- + BDT on K candidates
 - \rightarrow Purity of reconstructed K⁺: ~ 99.1%
 - \rightarrow "Purity" of events with 1 K⁺: ~80.6%

"Purity" of events with 1 K⁺ = evts with 1 MC K⁺ ROE evts with 1 K⁺ ROE reconstructed

Reconstruction of K⁺: the best strategy

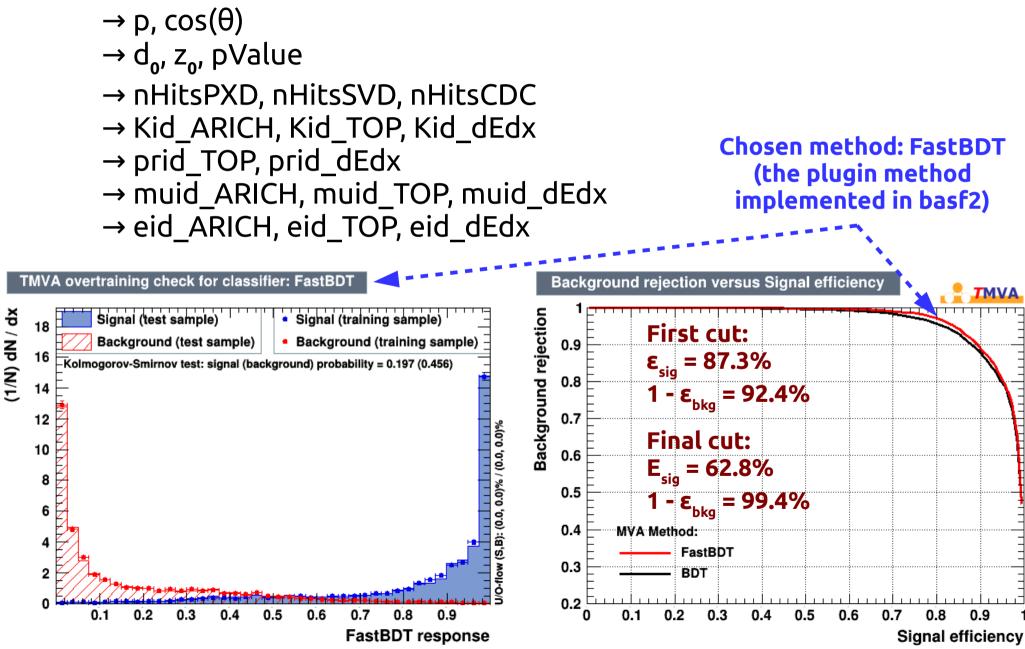
The best strategy I found to reconstruct the K⁺ in the ROE is the following one:

→ Preliminary selection of K⁺ (tracks with PID(K) > 0.1 and Prob(χ^2) > 10⁻³ of fitted track);

 \rightarrow Check if the selected track is part of the ROE;

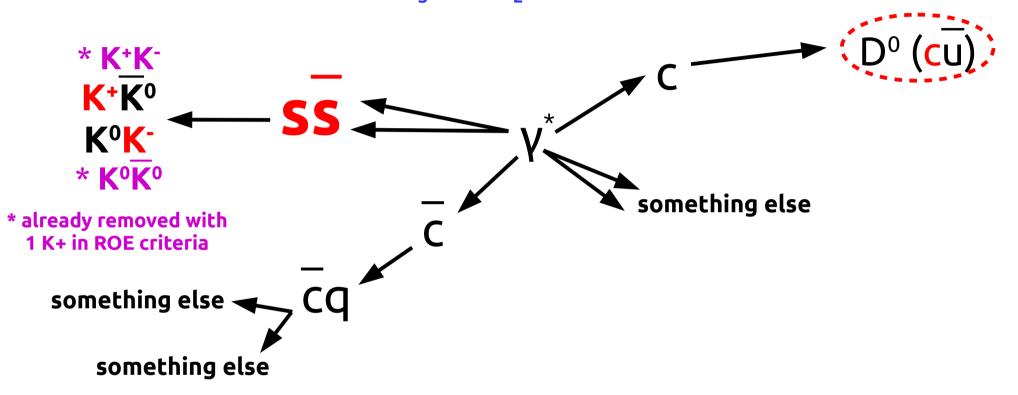
→ First "loose" selection BDT-based to cut away most of the background (ϵ_{sig} = 87.3%; 1 - ϵ_{bkg} = 92.4%);

 \rightarrow Check if the list of K⁺ contains only 1 candidate;


→ Final "tight" selection BDT-based (the same training as before, but a different point of work: $\varepsilon_{sig} = 62.8\%$, 1 - $\varepsilon_{bkg} = 99.4\%$).

Performances for events with 1 K⁺ in ROE $\rightarrow \frac{\text{#evts}^{\text{GEN}}}{\text{#evts}^{\text{RECO}}} = 83.9\%$

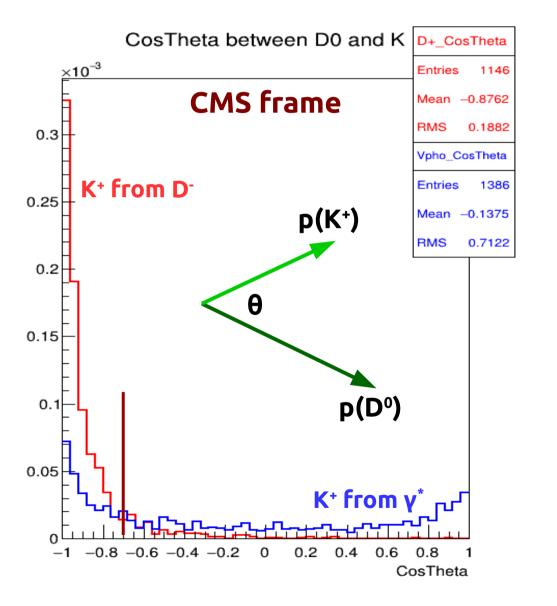
evts^{RECO} = evts with 1 MC K⁺ ROE evts^{GEN} = evts with 1 K⁺ ROE reconstructed


Reconstruction of K⁺: BDT

Variables used during the training of the BDT:

K^+/K^- from γ^* (ccss events) \rightarrow Selection & cuts

To improve the reduction of background from ccss event, it's possible to apply a **veto on neutral K (K_s and K_i) in the ROE**.



At present, the reconstruction of K_L is to be optimized (too large background), so it's not possible to apply any veto on K_L.

With a veto on K_s: K⁺ from γ^{*}: - 25% K⁺ from D⁻: - 10%

Kinematics of events: relative angle

Since cc are back to back, tagging K⁺ tends to go to the opposite direction respect to D⁰.

We can partially distinguish K⁺ from D⁻ and K⁺ from γ^{*}: selecting events with **cos(θ) < -0.7** we can cut away part of the physics background:

> K⁺ from γ^{*}: - 66% K⁺ from D⁻: - 10%

Signal and background: results

At present, the background is very large if we consider K- from D0 as a source of background:

\rightarrow signal events: ~ 25%

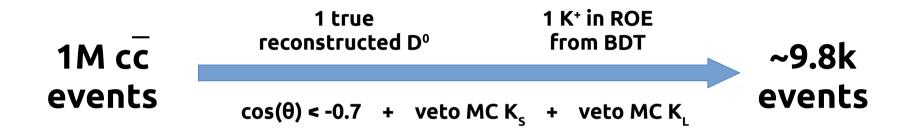
- K⁻ from D⁺: ~ 96%
- K⁻ from γ^{*}: ~ 4%

→ bkg events: ~ 75%

- K⁻ from D⁰/Dº: ~ 69.5% ------ Expected
- Events with missing K⁻: ~ 15.1%
- K⁻ from γ^{*}: ~ 9.6% ----
- K⁻ from D⁺ DCS: ~ 2.2% ----
- K⁻ from D_s⁺/D_s⁻: ~ 1.8% -----
- Events with fake K⁻: ~ 1.2%
- K⁻ from baryons DCS: ~ 0.6% ⁻

Only a veto on K_s has been applied

Including K⁻ from D⁰ in the signal sample



Huge improvement if **K**'s **from D**⁰ are moved to signal events:

 \rightarrow signal events: ~ 76.4% D^os from all - K⁻ from D⁰: ~ 67.1% < the decay channels! - K⁻ from D⁺: ~ 30.9% - K⁻ from baryons: ~ 2.0% Only a veto on K_c \rightarrow bkg events: ~ 23.6% has been applied - Events with missing K⁻: ~ 47.9% - K⁻ from y^{*}: ~30.4% - K⁻ from D⁻ DCS: ~ 7.0% - K⁻ from D⁺/D⁻: ~ 5.7% - Events with fake K⁻: ~ 3.9% D^os from all - K⁻ from D⁰ DCS: ~ 3.2% <the decay channels! - K⁻ from baryons DCS: ~ 1.9%

Possible future performance improvements

In order to evaluate the expected performances with an improved reconstruction, I made some additional requirements from MC truth: **0 MC K**, and **0 MC K**, per event.

→ signal events: ~ 86.8%


- K⁻ from D⁰: ~ 68.4%
- K⁻ from D⁺: ~ 29.7%
- K⁻ from baryons: ~ 1.9%

→ bkg events: ~ 13.2%

- Events with missing K⁻: ~ 52.2%
- K⁻ from γ^{*}: ~30.0%
- K⁻ from D⁰ DCS: ~ 8.1%
- Events with fake K⁻: ~ 6.1%

- K⁻ from baryons DCS: ~ 2.8%
- K⁻ from D⁻ DCS: ~ 0.5%
- K⁻ from D_s⁺/D_s⁻: ~ 0.3%

Tagging efficiency with MC improvements

Results shown for events with 1 D^o and 1 K⁺ in ROE Cuts applied: cos(θ) < -0.7; veto on MC K_s; veto on MC K₁.

Comparison with D*+ method

In order to evaluate the tagging efficiency and mistagging level, I will perform in next days a comparison with the D*+ (standard) method.

I already generated and simulated 100k cc events with at least 1 D*+ per event.

The generated D*+ decays in:

- ~ 33% of times in D⁺ п⁰;
- ~ 67% of times in D^o (\rightarrow K⁻ π^+) π^+ .

I already performed the reconstruction (I reached purities of ~ 98.2% on D*+ reconstrucion and ~ 99.6% on D^o reconstrucion).

On recostructed events, I will apply both methods to flavour tag the D^os in order **to measure the efficiency of my method respect the efficiency of the D**^{*+} **techinque**.

This means that it will be possible to measure the efficiency of my method directly on the data!

Note that the two tagging technique are not correlated.

Conclusions

- The possibility to flavor tag the prompt D^o with a new method has been studied.

- Since the basf2 software isn't at the final version, some improvements are expected in the future:

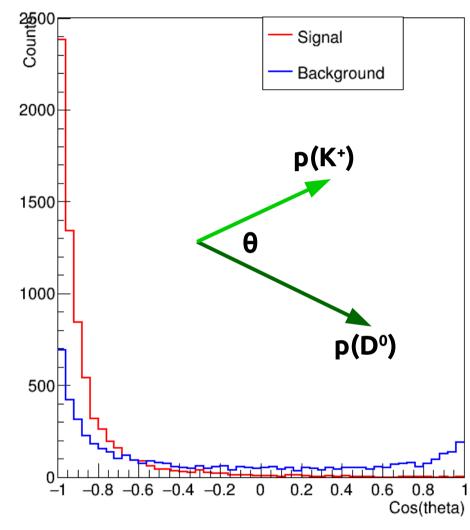
- \rightarrow the selection of K⁺ will improve;
- \rightarrow the reconstruction of K_s will improve;
- \rightarrow the reconstruction of K_L will improve.

- It's necessary to repeat the study with the final version of the software in order to evaluate correctly the performances of this method.

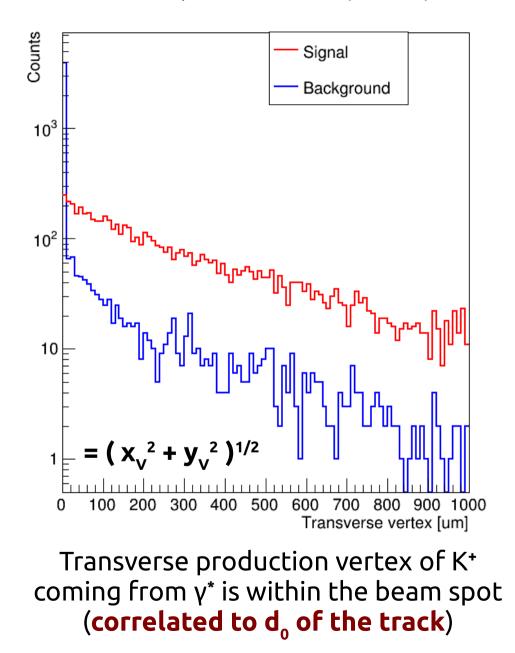
- It would be useful to apply this method for some analysis to evaluate the sistematic error introduced.

- Future plan: measure the mistag level of my method by a comparison with the D^{*+} method: possibility to make the measurement with real data!

Thank you for the attention!

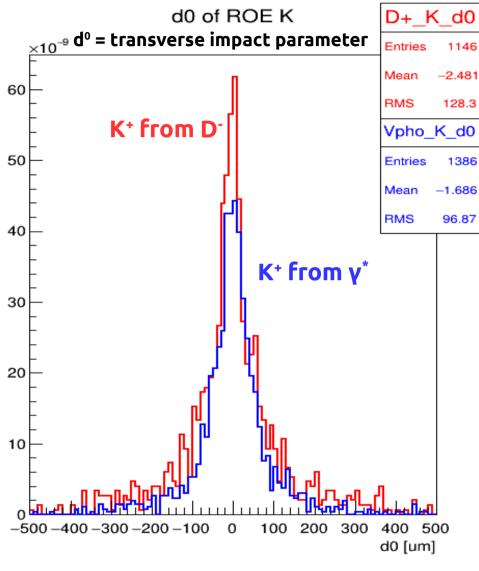

D, or not D that is the question

Backup slides

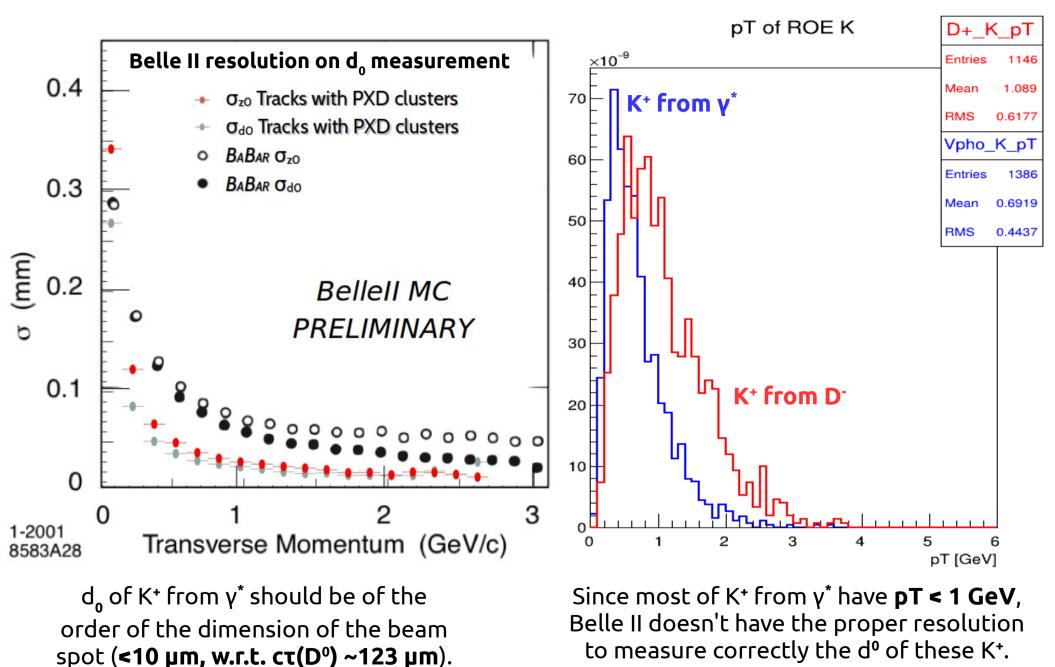

Kinematics of the generated events

Angle between D0 and K+ (CMS frame)

Transverse production vertex of K+ (LAB frame)



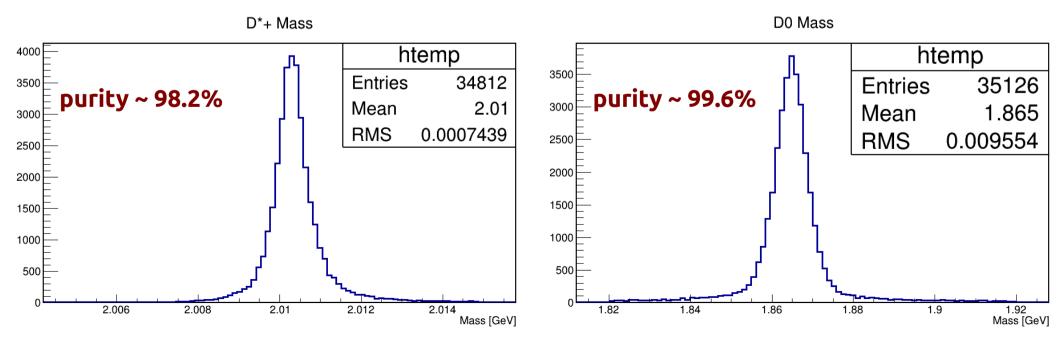
Since cc are back to back, tagging K⁺ tends to go to the opposite direction respect to D^o


Data referred to $c\bar{c}$ events at generator level!

Kinematics of the recons. events: impact parameter

d_o of K⁺ from γ^{*} should be of the order of the dimension of the beam spot (**<10 μm, w.r.t. cτ(D**^o**) ~123 μm**).

Kinematics of the recons. events: impact parameter


$D^{*+} \rightarrow D^0 \pi^+ / D^0 \rightarrow K^- \pi^+$

Reconstruction of D^0 \rightarrow K^- \pi^+:

- \rightarrow PID(K) > 0.5 and Prob(χ^2) > 10⁻³ of fitted track
- → PID(π) > 0.5 and Prob(χ^2) > 10⁻³ of fitted track
- → 1.82 GeV < m(K⁻ п⁺) < 1.92 GeV
- \rightarrow mass-vertex-fit (RAVE) with Prob(χ^2) > 10⁻³ of fit

Reconstruction of $D^{*+} \rightarrow D^{0} \pi^{+}$ **:**

- \rightarrow PID(π) from dEdX > 0.5
- → 0 MeV <= Q-value < 20 MeV
- \rightarrow mass-vertex-fit (RAVE) with Prob(χ^2) > 10⁻³ of fit

D^o from bb events

The best cut to remove the background D^o coming from bb events is p > 2.5 GeV in CMS frame:

ε_{sig} ~ 71.5% ε_{bkg} ~ 6·10^{^-5}

I tried a selection based on a BDT using: - z coordinate of the D° vertex - D° momentum - R2 Fox-Wolfram moment - cosine of the angle between thrust axis of D° and ROE

To keep low the background, a possible selection gives: