Release 7 Tracking Performances

\star data flow
\star performance with no
background
\star performance with
background
\star Conclusions

Giulia Casarosa
 INFN - Sezione di Pisa
 for the Tracking Group

$5^{\text {th }}$ Belle $l l$ Italian Collaboration Meeting \sim May, $30^{\text {th }} 2016$

Introduction

- Tracking is part of the reconstruction software
- The tracking software is also used online for the PXD data reduction, especially when QED background is simulated
- PXD data reduction idea: use SVD information to fit tracks, extrapolate them back to the PXD sensor and define the Regions of Interest (ROI). Only hits belonging to the ROIs are used for the offline reconstruction.
- It is therefore necessary to include tracking also in the simulation
- Release 7 is the first release in which it is possible to simulate the PXD data reduction
- PXD data reduction is NOT simulated by default

Online Tracking: PXD Data Reduction Simulation

Standard Simulation in Release 7

Offline Reconstruction (1)

Offline Reconstruction (2)

DAF - a Kalman fit that weights hits and rejects outliers
with pion mass hypothesis

Tracking Objects: Tracks \& V0s

Vertex Fitter with
mass hypothesis of $K s, \gamma, \wedge$

release-00-07-00 performances

Integrated Efficiency

\Rightarrow this study is based on a sample of $10 \mathrm{kY}(4 \mathrm{~S})$ generic decays reconstructed with the official standard reconstruction, no PXD Data Reduction \& no background

definition	efficiency (\%)	release-00-05-03	release-00-07-00
$\frac{\text { \#MCParticles with at least one associated Track }}{\text { \# MCParticles }}$	physical	85.6 ± 0.1	85.2 ± 0.1
$\frac{\text { \#MCTrackCands with at least one associated Track }}{\text { \#MCTrackCands }}$	geom. accept. \& det. ineff. factored out	94.0 ± 0.1	93.7 ± 0.1
\#MCTrackCand with at least one associated TrackCand	pattern recognition	96.6 ± 0.1	94.5 ± 0.1

NOTE: MCTrackCand from ideal pattern recognition
\Rightarrow no significant changes in the standard tracking reconstruction in the last release w.r.t to the previous releases \rightarrow no changes expected in the performances

- pattern recognition efficiency is slightly worse than last release
- physical efficiency is compatible with last release

Efficiency VS Transverse Momentum

- physical efficiency
- geometrical acceptance and detector efficiency factored out

Efficiency VS Polar and Azimuthal Angles

VXD Detector Information Usage

probability to attach a true hit to the TrackCand

- The pattern recognition attaches a true hit to a TrackCand with a probability that:
- is $\mathbf{>} 85 \%$ in the innermost 4 layers, and it's maximal on layer 3
- decreases from in the outer layers (80% on layer5, 70% on layer6)

Impact Parameters

- Belle IIVXD Tracking performs twice better than BABAR, when PXD clusters are attached to the track (75% of tracks have PXD cluster attached)

V0s Reconstruction

efficiency VS pt, normalized to MCParticles

\Rightarrow Integrated efficiency $=(60.8 \pm 0.8) \%$
\Rightarrow quasi-constant efficiency for V0s decaying between two layers

VOs Momentum Reconstruction

\Rightarrow Fitted momentum (x-axis) is correlated to the generated one $(y$-axis)

Background

- Let's add background in the simulation
- Standard background: BHWide + Coulomb + RBB + Touschek
- QED background:
- in the small time window $(P X D)=b k g l$
- in the large time window (PXD) = bkg2
- PXD data reduction is also simulated, referred to as "ROI" in the next slides

Tracking Efficiency with Background

efficiency VS pt, normalized to MCParticles

probability to attach a true hit to the TrackCand

- includes everything: geometrical acceptance, pattern recognition, fit
- significant degradation of efficiency with the background, simulating PXD data reduction partially recovers it

QED Background Effect

efficiency VS pt, normalized to MCParticles

probability to attach a true hit to the TrackCand

- includes everything: geometrical acceptance, pattern recognition, tit
\Rightarrow partial degradation of the efficiency when QED is simulated in the large time-window thanks to PXD data reduction

Background and Track Quality

\Rightarrow significant degradation of track quality with the background I, simulating PXD data reduction partially recovers it, 30\% increase in the RMS.

- QED background further reduces the quality of the tracks, $+25 \%$ in the RMS

Conclusions

- Performances of Tracking in release-00-07-00 are perfectly compatible with previous release in case of no background
- An important step in the simulation was made: PXD data reduction simulation is now available
- partially recovers the degradation of efficiency and track quality due to machine background
- Still a lot to improve (efficiency of using the PXD clusters, bias in the impact parameters, underestimation of the track parameters errors, ...)
- write to tracking@belle2.kek.jp for feedbacks and questions

Thank You!

Track Parameterisation

- POCA = Point Of Closest Approach
- d_{0} is the 2 d signed distance of the POCA from the z axis, the sign depends on the angular momentum of the track (>0 in the fig.)
- φ_{0} is the angle between Pt_{t} and the x axis at the POCA, $\varphi_{0} \in[-\pi, \pi]$
- the sign of ω, the curvature, is the same as the charge of the track (>0 in the fig.)
$\Rightarrow \tan \lambda$ is the ratio of p_{z} and p_{t}, $\lambda \in[-\pi, \pi]$
- z_{0} is the signed distance of the POCA from the transverse plane

