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Particle on a circumference (or in a crystal)

Hamiltonian operator: H = 1
2mp2 + V (φ) with V (φ) = V (φ+ 2π).

Let R be the 2π rotation operator, then [H,R] = 0 and R†R = 1.
Common base of eigenvectors of H and R :

H|E , θ〉 = E |E , θ〉, R |E , θ〉 = e iθ|E , θ〉, θ ∈ [0, 2π).

The wavefunctions ψE ,θ(φ) = 〈φ|E , θ〉 are obtained by solving
HψE ,θ(φ) = EψE ,θ(φ) with the b.c. ψE ,θ(2π) = e iθψE ,θ(0).

In the simple case V (φ) ≡ 0 eigenfunctions and eigenvalues are

ψn,θ(φ) =
1√
2π

e i(n+θ/2π)φ, En,θ =
1

2m

(

n +
θ

2π

)2

, n ∈ Z

θ

En,θ

−2π −π 0 π 2π

n = 1n = 0n = −1

Note that 〈ψn,0|ψm,θ〉 = 0 for every n,m:
θ dependence is nonperturbative!
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θ term in the toy model

The usual propagator is given by

〈φf , tf |φi , ti 〉 =
∑

k

ψk(φf )ψ
∗
k(φi )e

−iEk (tf −ti )

=

∫ φ(tf )=φf

φ(ti )=φi

[Dφ] exp

(

i

∫ tf

ti

L(φ)dt

)

To fix the value of θ in the path-integral approach we can use the identity
∑+∞

Q=−∞ e−iQ(θ−θ′) = 2πδ(θ − θ′), thus

θ〈φf , tf |φi , ti 〉θ =
1

2π

∑

Q

e−iQθ

∫ φ(tf )=φf +2πQ

φ(ti )=φi

[Dφ] exp

(

i

∫ tf

ti

L(φ)dt

)

=

=
1

2π

∫ φ(tf )=φf

φ(ti )=φi

[Dφ] exp

(

i

∫ tf

ti

(

L(φ)− θ

2π
φ̇

)

dt

)
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Peculiarities of the θ term θ
2π φ̇

It is a time derivative (in QCD, a four-divergence): no effect on the
equations of motion.

It explicitly breaks P and T symmetries when θ 6= 0, π (in QCD,
possibility of spontaneously broken P ,T ).

After Wick rotation

exp

(

i

∫

L[φ]dt − iθ

∫

φ̇ dt

)

→ exp

(

−
∫

LE [φ]dt − iθ

∫

φ̇ dt

)

thus at θ 6= 0 we can not use Monte-Carlo algorithms (in QCD, P
and T can not be spontaneously broken at θ = 0, Vafa-Witten th.).

θ term exists because of the nontrivial topology of the configuration
space: π1(S

1) = Z (in QCD, because of the nontrivial topology of the
gauge group: π3(SU(Nc)) = Z).

C. Bonati (Dip. Fisica & INFN, Pisa) θ dependence across deconfinement Pisa 2016 5 / 29



Canonical quantizaton of QCD

LQCD = −1

4
F a
µνF

a
µν +

∑

f

ψ̄a
f (iD

ab
µ γµ −mf )ψ

b
f

Pa
µ are the conjugate momenta of Aa

µ. The relations between momenta
and velocities are Pa

i = F0i , i ∈ {1, 2, 3} and Pa
0 ≡ 0. The dynamical

variables are Aa
i ,P

a
i ≡ −i~δ/δAa

i and the constraint can be written as

G a ≡ ∂iP
a
i + f abcAb

i P
c
i = 0

Let Ψ[A] be the wave function and ∆Aa
i = ∂iχ

a − f abcχbAc
i be an

infinitesimal gauge transformation. Then

Ψ[A+∆A]−Ψ[A] ≃
∫

δΨ[A]

δAa
i

∆Aa
i dx =

= −
∫
(

χa∂i
δ

δAa
i

+ f abcχaAb
i

δ

δAc
i

)

Ψ[A]dx ∝
∫

χaG aΨ[A]dx
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θ in QCD
The constraint G a = 0 ensures the gauge invariance of the wave function
under infinitesimal gauge transformation.
Can every gauge transformation be written as a product of infinitesimal
transformations starting from the identity? No! π3(SU(Nc)) = Z.

SU(2) example : Ω(x) = exp

(

iπxaσa
√

x2 + ρ2

)

Let R be the unitary transformation associated to the large gauge
transformation Ω. Then

HΨE ,θ[A] = EΨE ,θ[A], RΨE ,θ[A] = e iθΨE ,θ[A], θ ∈ [0, 2π)

The θ term in the lagrangian is

Lθ = θq(x), q(x) ≡ g2

64π2
ǫµνρσF

a
µνF

a
ρσ, Q =

∫

q(x)dx ∈ Z
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General properties of θ dependence

θ is RG invariant.

Z (−θ,T ) = Z (θ,T ) (A → CP(A) in path integral ∼ θ → −θ)
Behaviour under U(1)A: if ψj → e iαγ5ψj and ψ̄j → ψ̄je

iαγ5 then
θ → θ − 2αNf and mj → mje

2iα (if mj = 0 no θ dependence).

F (θ,T ) ≥ F (0,T ):

Z (θ,T ) =

∫

[dA]e−SE [A]−iθQ =

∣

∣

∣

∣

∫

[dA]e−SE [A]−iθQ

∣

∣

∣

∣

≤

≤
∫

[dA] |· · · | =
∫

[dA]e−SE [A] = Z (0,T )

Experimentally θ is compatible with zero (|θ| . 10−9 from neutron
electric dipole moment). Strong CP problem (problem?).

Most famous example of why θ-dependence matters even if θ = 0:
m2

η′ =
2Nf

f 2π
χNf =0 (Witten-Veneziano formula).
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General parametrization of θ dependence

F (θ,T ) = − 1

V4
log

∫

[DA][Dψ̄][Dψ] exp

(

−
∫ 1/T

0
dt

∫

d3x LE
θ

)

V4 = T/V , Aµ(0, x) = Aµ(1/T , x), ψ(0, x) = −ψ(1/T , x)

General parametrization (assuming analyticity in θ):

F (θ,T )− F (0,T ) =
1

2
χ(T )θ2

[

1 + b2(T )θ2 + b4(T )θ4 + · · ·
]

where

χ =
1

V4
〈Q2〉0 b2 = −〈Q4〉0 − 3〈Q2〉20

12〈Q2〉0

b4 =
〈Q6〉0 − 15〈Q2〉0〈Q4〉0 + 30〈Q2〉30

360〈Q2〉0
Coefficients b2n parametrize deviations of the distribution of topological
charge from a Gaussian in the theory at θ = 0.
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Large-Nc argument

F a
µνF

a
µν and ǫµνρσF

a
µνF

a
ρσ scale as N2

c

To have a nontrivial θ dependence in the large-Nc limit we have to keep
θ̄ ≡ θ/Nc fixed, in such a way that θg2 does not scale with Nc

(fermions are subdominant in the large-Nc limit).

The large-Nc scaling form of the free energy is thus (Witten 1980)

F (θ,T )− F (0,T ) = N2
c F̄ (θ̄,T )

where F̄ is generically nontrivial for Nc → ∞:

F̄ (θ̄,T ) =
1

2
χ̄θ̄2
[

1 + b̄2θ̄
2 + b̄4θ̄

4 + · · ·
]

By matching the powers of θ we obtain

χ = χ̄+ · · ·
b2n = b̄2n/N

2n
c + · · ·
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Semiclassical approximation (1)
In general one has (e.g. Coleman “The uses of instantons”)

semiclassical approximation ∼ weak coupling approximation

Slightly broader perspective:

possibility that a system can be described by means of weakly interacting
classical configurations even if the “elementary” coupling is not small

For weakly interacting instantons we have (DIGA, Gross, Pisarski, Yaffe 1981)

Zθ = Tre−Hθ/T ≈
∑ 1

n+!n−!
(V4D)n++n−e−S0(n++n−)+iθ(n+−n−)

= exp
[

2V4De
−S0 cos θ

]

where 1/D is a typical 4−volume. Thus

F (θ,T )− F (0,T ) ≈ χ(T )(1− cos θ)
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Semiclassical approximation (2)

From semiclassical behaviour in the broad sense, using also the leading
order suppression due to light fermions and zero modes one gets:

b2 = − 1

12
b4 =

1

360
b2n = (−1)n

2

(2n + 2)!

χ(T ) ∼ T 4
(m

T

)Nf

exp
[

− S0
]

Using also perturbation theory S0 =
8π2

g2(T )
≈ (113 Nc − 2

3Nf ) log(T/Λ)

χ(T ) ∼ mNf T 4− 11
3
Nc− 1

3
Nf

(Gross, Pisarski, Yaffe 1981)
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Chiral perturbation theory

The θ angle can be eliminated by an U(1)A rotation at the expense of
introducing a complex mass matrix. Chiral perturbation theory can then
be applied as usual. The result for the ground state energy is (T = 0)

E0(θ) = −m2
πf

2
π

√

1− 4mumd

(mu +md)2
sin2

θ

2

(Di Vecchia, Veneziano 1980) thus

χ =
z

(1 + z)2
m2

πf
2
π , b2 = − 1

12

1 + z3

(1 + z)3
, z =

mu

md

Explicitly

z = 0.48(3) χ1/4 = 75.5(5)MeV b2 = −0.029(2)

z = 1 χ1/4 = 77.8(4)MeV b2 = −0.022(1)
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Where to trust the approximations?

Indication that large-Nc can be problematic at T 6= 0

By using factorization and translation invariance we get

〈O(0)O(Rx)〉 = 〈O(0)〉〈O(Rx)〉 = 〈O(0)〉〈O(x)〉 = 〈O(0)O(x)〉

thus correlators of scalars are O(4) invariant also at finite temperature.

Indication that instanton calculus can be problematic at T = 0

The dominant contributions come from the nonperturbative IR region and
some ad hoc procedure has to be used to introduce confinement.
For T > Tc no additional confinement length scale is present and T works
as an infrared regulator.

Indication that ChPT can be problematic at T 6= 0

No chiral symmetry breaking for T > Tc .
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Topology on the lattice (problem 1)

The topological charge is well defined only for smooth enough gauge
configuration, so its definition on the lattice require some care.

Several methods have been devised during the years to study topology on
the lattice:

Field theoretical methods (perturbative/nonperturbative computation
of the renormalization constants)

Fermionic methods (using the lattice index theorem for
Ginsparg-Wilson fermions)

Smoothing methods

All these methods have advantages and drawbacks, nevertheless they have
been proven to give compatible results for the physical observables
(see e.g. Panagopoulos, Vicari 0803.1593, Bonati, D’Elia 1401.2441).
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Topology on the lattice (problem 2)

The topological charge is well defined for smooth enough gauge and MC
updates are almost smooth: as the continuum limit is approached it gets
increasingly difficult to correctly sample the different topological sectors.
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from C. Bonati, M. D’Elia, M. Mariti, G. Martinelli, M. Mesiti,

F. Negro, F. Sanfilippo, G. Villadoro 1512.06746.
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SU(N) theories across Tc (1)

B. Alles, M. D’Elia, A. Di Giacomo 9706016 L. Del Debbio, H. Panagopoulos, E. Vicari

0407068

-0.1 0.0 0.1

t

0.0

0.2

0.4

0.6

0.8

1.0

 R

N=4, Lt=6
N=4, Lt=8
N=6, Lt=6

The topological susceptibility is constant for T . Tc and then abruptly
decreases.
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SU(N) theories across Tc (2)

C. Bonati, M. D’Elia, H. Panagopoulos, E. Vicari 1301.7640

(C. Bonati, M. D’Elia, A. Scapellato 1512.01544)

-0.05 0 0.05 0.1 0.15

t
-0.125

-0.1

-0.075

-0.05

-0.025

0

b
2

T=0, N=3

instanton gas

T=0, N=6 N=3, Lt=10
N=3, Lt=12
N=6, Lt=6
N=6, Lt=5

large-Nc scaling for T < Tc , b2 independent of Nc for T > Tc

DIGA values (b2 = −1/12, b4 = 1/360) reached for T & 1.1Tc
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SU(3) theory for T > Tc

S. Borsanyi et al. 1508.06917

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 0.9  1  2  3  4

χ
/T

c
4

T/Tc

Nt=5
Nt=6
Nt=8

pointwise continuum
global fit continuum

χ(T ) ∝ 1/T b, where b = 7.1(4)(2) (DIGA prediction b = 7).
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G2 theory across Tc

C. Bonati 1501.01172

0.8 0.9 1 1.1 1.2
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0
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b 2
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Everything looks the same as in SU(N) theories, but in G2 no large-Nc

limit exists! Alternative explanation? Relation to confinement?
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QCD at T = 0 (from 1512.06746)

0 0.005 0.01 0.015 0.02

a2 [fm2]

50

100

150

200

χ1/
4  [

M
eV

]

ChPT

quenched

Large cut-off effects but continuum limit compatible with ChPT
(73(9)MeV against 77.8(4)MeV)
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QCD at T & Tc (from 1512.06746)

1 1.5 2 2.5 3 3.5 40.7
T/Tc

0.01

0.1

1
χ(

T
)/

χ(
T

=
0)

Continuum ext.
DIGA
ChPT
a = 0.0572 fm
a = 0.0707 fm
a = 0.0824 fm

Cut-off effect strongly reduced in the ratio χ(T )/χ(T = 0), moreover
χ(T ) ∝ 1/T b with b = 2.90(65) (DIGA prediction: b = 7.66÷ 8)
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QCD at T & Tc (from 1512.06746)

1 2 3 4
T/Tc

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02
b 2
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ChPTb2(T=0)

b2
DIGA

Deviations from DIGA much larger than in pure gauge theories and of
opposite sign. Quark mediated instanton interactions?
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Possible solutions of the strong CP problem

1 At least a massless quark (mu = 0).

2 Assume a CP invariant lagrangian for the standard model and explain
CP violation by CP SSB.

3 “Dynamical” θ angle.

Realization of mechanism 3: add to SM a pseudoscalar field a with
coupling a

fa
F F̃ and only derivative interactions. Since the free energy has a

minimum at θ = 0, a will acquire a VEV such that θ + 〈a〉
fa

= 0.

Goldstone bosons have only derivatives coupling, so the simplest possibility
is to think of a as the GB of some U(1) axial symmetry (Peccei-Quinn
symmetry). The effective low-energy lagrangian is thus

L = LQCD +
1

2
∂µa∂

µa+

(

θ +
a(x)

fa

)

q(x) +
1

fa

(

model dependent
terms

)
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Simplest theoretical model (Kim, Shifman, Vainshtein,
Zakharov)

Q =new quark, φ =new complex scalar

L =
1

2
|∂µφ|2 + Q̄i /DQ + λφQ̄LQR + h.c − V (|φ|2)

U(1)PQ :

{

φ→ e iαφ

Q → e−i α
2
γ5Q

After SB φ =
vPQ√
2
e ia/vPQ

Rotating away the phase we obtain a mass term λ
vPQ√

2
Q̄Q for the new

fermion and the coupling of the axion with the gluons a
vPQ

q(x).

If we have Nf flavours of Q, then fa = vPQ/Nf and U(1)PQ → ZNf
. If Q

is EM charged we obtain a direct coupling to photons.

(other famous model: Dine, Fischler, Srednicki, Zhitnitskii, Peccei, Quinn,
Weinberg, Wilczek)
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Axions and QCD vacuum

Cadamuro 1210.3196

Hot DM
Topological
defect decayCold DM
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-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

1234567891011121314

Log10Hma�eVL

Log10H fa�GeVL

The coupling fa turns out to be very large, so in computing the free energy
we can safely neglect axion loops. We can thus use the substitution rule
θ → a/fa and the square mass of the axion is related to χ, its fourth
coupling to b2 and so on. Explicitly

ma(T ) =

√

χ(T )

fa
; ma(T = 0) =

mπfπ
√
z

(1 + z)fa
≈ 5.70µeV

(

1012GeV

fa

)
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Axions as dark matter
Cosmological sources of axions: 1) thermal production 2) decay of
topological objects 3) misalignment mechanism

Idea of the misalignment mechanism: the EoM of the axion is

ä(t) + 3H(t)ȧ(t) +m2
a(T )a(t) = 0

at T ≫ ΛQCD the second term dominates and we have a(t) ∼ const

(assuming ȧ ≪ H initially); when ma ∼ H the field start oscillating arount
the minimum. When ma ≫ H a WKB-like approx. can be used

a(t) ∼ A(t) cos

∫ t

ma(t̃)dt̃;
d

dt
(maA

2) = −3H(t)(maA
2)

and thus the number of axions in the comoving frame Na = maA
2/R3 is

conserved.

Overclosure bound: axion density ≤ dark matter density
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Axions as dark matter (from 1512.06746)

Initial condition? If PQ symmetry breaks before inflaction the initial value
is constant, outherwise an average on the initial value has to be performed.
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Conclusions

For SU(Nc) gauge theory without fermions
◮ the deconfinement transition can be interpreted as a transition between

large-Nc and instanton behaviours for the θ dependence
◮ b2n coefficients enter the DIGA regime for T & 1.1Tc , deviations

indicate repulsive interactions between instantons
◮ χ(T ) well described by the DIGA behaviour χ(T ) ∼ T−7

(Is this accidental?)

For the G2 theory without fermions everything goes like for SU(Nc)
but no large-Nc limit exists (Indication of a general relation between
topology and confinement?)

For Nf = 2 + 1 QCD
◮ the convergence of b2n to the DIGA prediction is slower and deviations

indicate attractive insteractions between instantons
◮ χ(T ) shows strong deviation from DIGA for T . 4Tc

(When DIGA sets in? Simulations at higher temperature needed.
Algorithms for performing these simulations needed)

◮ the limits on fa from misalignment mechanism increase by almost an
order of magnitude
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Thank you for your attention!
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Backup slides with something more
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Comparison between smoothing algorithms

Bonati, D’Elia 1401.2441
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Cooling-like picture displaying the
values of the top. susceptibility as a
function of the mass used in the
overlap Dirac operator in SU(3).
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Comparison with χ(T ) from other groups

1 1.5 2 2.5 3 3.5
T/Tc

20

40
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χ(
T

)1/
4  [
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]

TM a = 0.064(1) fm
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Comparison with twisted mass data by Trunin et al. 1510.02265 at
non-physical quark masses. Data rescaled according to DIGA relation
χ(T ) ∝ m2

q ∝ m4
π (and mTM

π ≈ 370MeV) .
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Virial-like corrections to DIGA
F (θ,T ) is an even function of period 2π, thus

F (θ,T )− F (0,T ) =
∑

n>0

an [1− cos(nθ)] =
∑

n>0

c2(n−1) sin
2n(θ/2)

Developing in series we obtain

χ = c0/2; b2 = − 1

12
+

c2

8χ
; b4 =

1

360
− c2

48χ
+

c4

32χ

and c2n contributes only to b2m with m ≥ n. This is a virial-like expansion
and it is reasonable to assume

c2(n−1) = d2(n−1)
χn

χn−1(T = 0)
.

The first correction to DIGA is thus

F (θ) = χ(1− cos θ) + d2
χ2

χ(T = 0)
sin4(θ/2)

b2 = − 1

12
+

d2

8

χ

χ(T = 0)
, d2 = 0.80(16) .
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Axions as an “easy solution” of strong CP problem

http://imgs.xkcd.com/comics/fixion.png
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