

The event: Raw data and detector characterization

Francesco Fidecaro- Università di Pisa and INFN Pisa On behalf of the LIGO Scientific Collaboration and the Virgo Collaboration

LIGO Livingston Observatory Louisiana, USA

Virgo, Cascina, Italy

LIGO Hanford Observatory Washington, USA

THE EVENT GW150914 AT 2015-09-14 11:50:45 CEST

GWFestival – March 1,, 2016

Francesco Fidecaro

September 14, 2015 – 12:56 CEST

From:	Marco Drago <marco.drago@aei.mpg.de></marco.drago@aei.mpg.de>			
Sent:	lunedi 14 settembre 2015 12:56			
To:	burst@sympa.ligo.org			
Cc:	cbc@ligo.org; The LIGO Data Analysis Software Working Group; Calibration; dac@sympa.ligo.org; burst@ligo.org; detchar@sympa.ligo.org; losc-devel@ligo.org; lsc-all@ligo.org			
Subject:	[dac] Very interesting event on ER8			

Hi all, cWB has put on gracedb a very interesting event in the last hour. https://gracedb.ligo.org/events/view/G184098

This is the CED: https://ldas-jobs.ligo.caltech.edu/~waveburst/online/ER8_LH_ONLINE/JOBS/112625/1126259540-1126259600/OUTPUT_CED/ced_1126259420_180_1126259540-1126259600_slag0_lag0_1_job1/L1H1_1126259461.750_1126259461.750/

Qscan made by Andy: https://ldas-jobs.ligo.caltech.edu/~lundgren/wdq/L1_1126259462.3910/ https://ldas-jobs.ligo.caltech.edu/~lundgren/wdq/H1_1126259462.3910/lt is not flag as an hardware injection, as we understand after some fast investigation. Someone can confirm that is not an hardware injection?

Marco

September 14, 2015 – 11:50:45 CEST

Initial detection made by a low latency searches for generic GW transients: **Coherent WaveBurst**

Reported within 3 minutes after data acquisition

Francesco Fidecaro

Detector noise

Signals are band passed 35-350 Hz and band stopped for instrumental spectral lines

Signals, residuals, time frequency plots

Potential noise sources

- In the same frequency band of expected astrophysical signals one will have stationary and transient noise
- The level of stationary noise is the result of the detector design and is constantly measured by maintaining a correct working point. It is represented by the sensitivity curve
- Transient noise can be identified by using auxiliary channels
- 2 x 10⁵ auxiliary channels are monitored to identify sources that can couple to the dark fringe signal

Uncorrelated sources

- Anthropogenic displacement noise: Accelerometers, Seismometers, Microphones
- Earthquakes with frequency 0.03 0.1 or higher, can upconvert into the instrument: Seismometers, Ground tiltmeter
- Magnetic noise: Magnetometers
- EM noise in radio frequency sidebands used to sense optical resonant cavities: EM antennas, amplitude and phase monitoring in circuits
- Blip signals entering in sensing and control loops: waveform consistency checks

LIGO Environmental sensors

- Seismic / Vibrations
- Ground tilt
- Acoustic
- Infrasound
- Magnetic
- Radio EM
- Mains
- Weather
- Lightning
- Temperature

Virgo Environmental sensors

Correlated sources

- Global (correlated) noise: Electromagnetic field sources:
 - Lightnings and Schumann resonance excitation
- Solar events 10⁰ incations Jured by antenna: Cosmic ray showers: er vibrational modes, well 'ecay 10 M. Coughlin VIR-0072A-16 50 90 Mean Monitored by antenna: • Cosmic ray showers: er 10 25 15 20 30 Frequency [Hz] (a) PSD

Horizon stability for GW150914 likes

- Optimal source and detector orientation
- SNR 8

Single interferometer rate

cWB Background triggers

• Coherent (2 interferometer) triggers

Data quality flags

- Based on the identification of reproducible instrumental problems (glitchy electronics,...)
- Must be safe (low probability to veto good events)

Transient noise around GW150914

• Immediately around the event data are clean and stationary

Additional checks

- Coincident sources of interference were found to produce negligible noise
- Activity of personnel on site was monitored
- Hardware injection signals were scrutinized
- No data quality vetoes were active
- Data calibration was also checked
- Eg:USGS reported 2 2.1 magnitude earthquakes within 20 minutes of GW150914:10 nm/s ground motion is too small to produce an impact
- Air compressor at Hanford active
- Occurences of blip transients in Liv
- Collaboration generated check list
- Detection committee
- 4 step detection procedure ended

GWFestival – March 1,, 2016

Detection procedure

	Step 1 (2 weeks)	Step 2 (4 weeks)	Step 3 (4 weeks)	Step 4 (3 weeks)
Search Group	Notice, notify, launch studies of significance, PE	Organize info for paper; continue signif./PE studies	On call	swer questions
DetChar + Instrumentalists	Evaluate DQ and instrument state	Present DQ / instrument to DC	call	Answer questions
Reviewers	Review search procedure	Review search tesult		Answer questions
Paper Coordinating Team		Assemble case sentation to DC; rdinate writing of per	Present Detection Claim, paper to DC	Present to Collaborations
Detection Committee	ok n. in De,	Review DQ	Review Detection Claim	Present to Collaborations
EM follow-up	for Sunterpart	Interpret observations	On call	Answer questions
DAC	Facilitate communication	Convene presentations, collect questions	Convene presentations, collect questions	Prepare Collaborations meetings
Collaborations	Ask questions	Ask questions	Ask questions	Make judgment
Spokespersons	Keep process moving	Appt. Paper Coordinating Team	Keep process moving	Plan publication, publicity

Conclusions

- After years of work LVC were prepared to detect faint signals from remote corners of the Universe
- The first signal was large, the task became easier
- We have detected gravitational waves!